大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。
1、体育行业预测
世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。其中,百度在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,百度与微软则以16场比赛15场准确预测的成
绩让人们见识到大数据在预测领域的魅力。从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试
通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,百度推出的中小企业景气指数预测,应用百度海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的
全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票
这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相
关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
后面还有用户行为预测、个人健康预测、交通行为预测等领域都有涉及,你可以自己好好看看,希望对你有帮助。http://www.ruanyun.net/news/ryyc/n152.aspx
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
从大数据角度看,可以把整个营销行为进行数据化,使得营销行动目标明确、可追踪、可衡量、可优化。下面介绍两个大数据营销的成功案例。
百事可乐利用大数据分析签约吴莫愁
“百事可乐选择吴莫愁做代言,是通过大数据的高性能分析得出的结果。”事实上,吴莫愁一出道便颇具争议,但从大数据来分析,这些争议仅限于每位观众对她不同的感觉,而不是她自身的绯闻。在查看这些数据后,百事公司发现,吴莫愁具有相当高的美誉度,并且个性鲜明、带有很强的新生代印记,这成为百事选择吴莫愁的另一个要素。
通过大数据分析促成的这笔签约,也让双方获得双赢的结果。在成功代言百事广告的2013年,吴莫愁跻身“年度华语女歌手吸金榜”第一位,同时,“吴莫愁代言百事”的相关检索量快速攀升,从而带动了百事品牌关注度的增长。
趣多多利用大数据分析玩转愚人节
趣多多利用大数据高性能分析精准锁定了以18-30岁的年轻人为主流消费群体,聚焦于他们乐于并习惯使用的主流社交和网络平台,如新浪微博、腾讯微博、微信、陌陌各种社交APP以及优酷视频等。在愚人节当日进行全天集中性投放,围绕品牌的口号展开话题,使品牌在最佳时机得到最有效曝光。
通过大数据分析趣多多在愚人节的这次大数据营销活动,创造了6亿多次页面浏览并影响到近1500万独立用户,品牌被提及的次数增长了270%。
大数据分析处理正借用巨大商业价值走向营销的大舞台,很多人已经意识到大数据对企业的重要性,而且越来越多的企业试图从海量的数据中分析出有价值的商业信息,以便做到精准营销。
参考资料:http://www.chinawiserv.com/home/news/detail/id/491
大数据时代,几个例子告诉你什么是大数据
工具类厂商蓄意炒作大数据,以达到售卖产品的目的,但导致的结果是很多人对大数据这一概念云里雾里。实际上,大数据就发生在你我身边,虽然你看不到它,但它却时时影响着我们的生活。
现阶段,和大数据相关的企业有三种。一种是工具类公司,他们宣传得最卖力,并且把大数据吹出了泡沫,原因是它们希望把自己的产品卖给企业;一种是依托于大数据从事咨询服务类的企业;还有一种就是实实在拥有大数据的公司,它们和我们休戚相关,也就是下面的小故事所要阐述的内容。
第一个故事,百货公司知道女孩怀孕
美国的Target百货公司上线了一套客户分析工具,可以对顾客的购买记录进行分析,并向顾客进行产品推荐。一次,他们根据一个女孩在Target连锁店中的购物记录,推断出这一女孩怀孕,然后开始通过购物手册的形式向女孩推荐一系列孕妇产品。这一作法让女孩的家长勃然大怒,事实真相是女孩隐瞒了怀孕消息。
点评:看似杂乱无章的购买清单,经过对比发现其中的规律和不符合常规的数据,往往能够得出一些真实的结论。这就是大数据的应用。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
第二个故事,搜狗热词里的商机
王建锋是某综合类网站的编辑,基于访问量的考核是这个编辑每天都要面对的事情。但在每年的评比中,他都号称是PV王。原来他的秘密就是只做热点新闻。王建锋养成了看百度搜索风云榜和搜狗热搜榜的习惯,所以,他会优先挑选热情榜上的新闻事件来编辑整理,关注的人自然多。
点评:搜狗拥有输入法,搜索引擎,那些在输入法和搜索引擎上反复出现的热词,就是搜狗热搜榜的来源。通过对海量词汇的对比,找出哪些是网民关注的。这就是大数据的应用。
第三个故事,阿里云知道谁需要贷款
这是阿里人讲述的一个故事。每天,海量的交易和数据在阿里的平台上跑着,阿里通过对商户最近100天的数据分析,就能知道哪些商户可能存在资金问题,此时的阿里贷款平台就有可能出马,同潜在的贷款对象进行沟通。
点评:通常来说,数据比文字更真实,更能反映一个公司的正常运营情况。通过海量的分析得出企业的经营情况,这就是大数据的应用。
第四个故事,中移动挽留流失客户
iPhone进入中国后,铁杆的移动用户王永铭加入了联通合约机大军。由于合约机承担了大量通话内容,王永铭将全球通换成了动感地带。三个月之后,王永铭接到了中国移动的10086电话,向他介绍中移动的优惠资费活动。一位移动的工作人员称,运营商会保管用户数据,如果话费锐减,基本上就是流失先兆。
点评:给数亿用户建立一个数据库,通过跟踪用户的话费消耗情况,运营商就能知道哪些用户在流失。这就是大数据的应用。
第五个故事:工薪阶层如何省小钱
上汽通用五菱股份有限公司的肖伟,是个不折不扣的网购专家。区别于菜市场的费力砍价,肖伟的作法简单多了,登陆各种比价网站,然后选择最便宜的正规店下单。
点评:比价网站通过海量的产品信息抓取,比如抓京东、天猫、易购的数据,然后将价格由低到高进行排列,这也是大数据的应用。
第六个故事:公关公司的舆情监督
这是一个离职公关人的故事。她参与和间接参与了很多危机公关事件,比如雷士照明的创始人股东之争,比如罗永浩砸西门子冰箱事件。她说,她每天的事情都是上网搜索事件的热度,然后决定下一步的动作。
点评:实际上你的每一下搜索,都是基于海量数据进行的,这实际上也是大数据的一种应用。
第七个故事:商用社交开始决定百事可乐的营销计划
这年头,广告主越来越精,他们希望花的每一分钱都有所回报。面对五花八门的营销活动,到底哪一种才是最合适的呢?百事可乐的作法很简单,它们购买了社交信息优化推广公司SocialFlow的服务,对数据进行分析,从而知道何种营销活动的传播效果更好。
点评:广告主越来越喜欢为类似Social Flow的服务付费,基于海量数据分析然后得出结论的企业营销行为,也是大数据应用。
第8个故事:每天,我们借助大数据完成微信上的互动
田宇是一个85后小姑娘,每天她用微信来记录心情,并且和网友分享图片,此外还有各种语音聊天。全国有数亿像田宇一样的人在使用微信,每天都有大数据在微信这个平台上跑着。
点评:可能你不知道,但你每天都在使用和大数据相关的工具。
第九个故事:大数据解救了每一个“地理白痴”
李小茗是个“地理白痴”,所以他下载了一个高德地图。没有安装导航的原因,是因为这一产品付费,且占据了超过3G的内存。只要花一点流量,李小茗就能在地图上查看自己所处的位置,以及周围的建筑。
点评:虽然李小茗不知道什么是大数据,但每个在他地图屏幕上跳出来的坐标,实际上都是由大数据堆成的。