(1)解:由已知得2Sn=an+an2,①
当n≥2时,2Sn-1=an-1+an?12,②
①-②,得2an=an-an-1+an2?an?12,
即(an+an-1)(an-an-1-1)=0,
∵数列{an}的各项均为正数,
∴an-an-1=1,
又n=1时,2a1=a1+a12,解得a1=1,
∴{an}是首项为1,公差为1的等差数列,∴an=n.
(2)证明:∵bn=
=1 n(n+2)
(1 2
?1 n
),1 n+2
∴Tn=
(1?1 2
+1 3
?1 2
+…+1 4
?1 n
)1 n+2
=
(1+1 2
?1 2
?1 n+1
)1 n+2
=
?3 4
(1 2
+1 n+1
)<1 n+2
.3 4
∴数列{bn}的前n项和Tn<
.3 4