lim arctan3x / sin2x
上下同时除以x
=lim arctan3x/x / sin2x/x
=(3/2)*lim arctan3x/3x / sin2x/2x
因为,
lim sin2x/2x=1(重要的极限)
lim arctan3x/3x
换元3x=t,
=lim arctant/t
再换元t=tanu
=lim u/tanu
=lim u/sinu * lim cosu
=1*1
=1
因此
=(3/2)*lim arctan3x/3x / lim sin2x/2x
=(3/2)*1/1
=3/2
有不懂欢迎追问