简算(1+1⼀2)(1+1⼀2^2)(1+1⼀2^4)(1+1⼀2^8)(1+1⼀2^15)

2025-01-03 07:45:58
推荐回答(1个)
回答1:

(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15

=[(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15]×(1-1/2)/(1-1/2)
=[(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+(1-1/2)×1/2^15]/(1-1/2)
=[(1-1/2²)(1+1/2^2)(1+1/2^4)(1+1/2^8)+(1-1/2)×1/2^15]/(1/2)
=[(1-1/2⁴)(1+1/2^4)(1+1/2^8)+(1-1/2)×1/2^15]/(1/2)
=(1-1/2^8)(1+1/2^8)+(1-1/2)×1/2^15]/(1/2)
=(1-1/2^16+1/2^15-1/2^16)/(1/2)
=(1-1/2^16×2+1/2^15)/(1/2)
=(1-1/2^15+1/2^15)/(1/2)
=1/(1/2)
=2

不懂还可问,满意请及时采纳!o(∩_∩)o