三角函数的单调性问题

2025-03-29 10:10:36
推荐回答(5个)
回答1:

f(x)=sin(2x+π/4)+cos(2x+π/4)
=sin2xcos(π/4)+cos2xsin(π/4)+cos2xcos(π/4)-sin2xsin(π/4)
=√2cos2x
增区间是:2kπ-π≤2x≤2kπ
即:kπ-π/2≤x≤kπ
得增区间是:[kπ-π/2,kπ],其中k∈Z

图像:先画出y=cosx的图像,再将图像上的点的横坐标全部缩小为原来的一半,得到:y=cos2x,再把所得到的函数图像上的点的纵坐标全部扩大到原来的√2倍,则得:y=√2cos2x的图像。

回答2:

f(x)=sin(2x+π/4)+cos(2x+π/4)
=√2[sin(2x+π/4)(√2/2)+cos(2x+π/4)(√2/2)]
=√2[sin(2x+π/4)cos(π/4)+cos(2x+π/4)sin(π/4)]
=√2sin(2x+π/4+π/4)
=√2sin(2x+π/2)
=√2cos[π/2-(2x+π/2)]
=√2cos(-2x)
=√2cos(2x)

剩下的就简单了,就是将cosx的图像水平压缩一倍,竖向拉长√2倍。

回答3:

f(x)=根号2*[sin(2x+π/4)cos(π/4)+cos(2x+π/4)sin(π/4)]
=根号2*sin(2x+π/4+π/4)=-根号2*cos(2x)
所以f(x)的单调增区间为π+2kπ<2x<2π+2kπ,π/2+kπ所以f(x)的单调减区间为2kπ<2x<π+2kπ,kπ

回答4:

f(x)=sin(2x+π/4)+cos(2x+π/4)
=sin(2x+π/4)+sin(π/4-2x)
=2*sinπ/4cos2x
=√2cos2x
2kπ<=2x<=2kπ+π, 减函数
即:kπ<=x<=kπ+π/2,减函数
2kπ+π<=2x<=2(k+1)π,增函数
即:kπ+π/2<=x<=(k+1)π,增函数

回答5:

求它的一阶导数,对啦,导数你知道不?在对导数的零点也就是等于灵的点。然后导数大于零的区间就是增的,小于零的区间就是减的。图像不用苛刻,一般就行。