解:原式 = (m³-1)- 4m(m-1)
= (m-1)(m²+m+1) - 4m(m-1)
= (m-1)(m²-3m+1)
令m² - 3m +1 = 0,
用求根公式,解得
m = (1/2)[3 ± √(3²-4*1*1)]
= (3±√5)/2
∴ m² - 3m +1 = [m - (3+√5)/2][m - (3-√5)/2]
∴因式分解的结果是
m^3-4m^2+4m-1 = (m-1)[m - (3+√5)/2][m - (3-√5)/2]
原式 m^3-4m^2+4m-1
=(m³-1)-(4m²-4m)
=(m-1)(m²+m+1)-4m(m-1)
=(m-1)(m²+m+1-4m)
=(m-1)(m²-3m+1)
不懂的还可以问!满意请及时采纳! O(∩_∩)O
=(m-1)(m^2-3m+1)
=(m-1)[m-(3+√5)/2][m-(3-√5)/2]