求不定积分∫(1+x^2)^1⼀2dx

2025-01-08 07:58:12
推荐回答(5个)
回答1:

令x=tan(t), 则dx=(sect)^2dt

带入∫(1+x^2)^(1/2)dx

=∫sectdtant

=secttant-∫tantdsect

=sect*tant-∫sect*tan²tdt

=sect*tant-∫sect(sec²t-1)dt

=secttant-∫sec³tdt+∫sectdt

=secttant-∫sec³tdt+ln|sect+tant|

2∫sec³tdt=secttant+ln|sect+tant|

∫sec³tdt=(secttant+ln|sect+tant|)/2+C

反带回得:

∫(1+x^2)^1/2dx

=(x√(1+x^2)+ln|x+√(1+x^2)|)/2+C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

参考资料来源:百度百科——不定积分

回答2:

分部积分法。类似。

回答3:

令x=tanθ,-π/2<θ<π/2

即dx=secθ^2*dθ

则∫(1/√1+x^2)dx

=∫(1/√(1+tanθ^2)*secθ^2*dθ

=∫(1/cosθ)dθ

=∫[cosθ/(cosθ)^2]dθ

=∫1/[1-(sinθ)^2]d(sinθ)

=1/2*ln[(1-sinθ)/(1+sinθ)]+C

=ln[x+√(1+x^2)]+c(c为常数)

求1/根号(1+x^2) 的原函数就是求函数1/根号(1+x^2) 对x的积分。

求1/根号(1+x^2) 的原函数,用”三角替换”消掉根号(1+x^2)。

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

10、∫ secx dx =ln|cot(x/2)| + C 

= (1/2)ln|(1 + sinx)/(1 - sinx)| + C 

= - ln|secx - tanx| + C 

= ln|secx + tanx| + C

回答4:

上面的那几位高手用的是三角替换,鄙人学艺不精,用的是双曲替换

回答5:

令x=tan(t), 则dx=(sect)^2dt,
带入∫(1+x^2)^(1/2)dx
=∫sectdtant
=secttant-∫tantdsect
=sect*tant-∫sect*tan²tdt
=sect*tant-∫sect(sec²t-1)dt
=secttant-∫sec³tdt+∫sectdt
=secttant-∫sec³tdt+ln|sect+tant|

2∫sec³tdt=secttant+ln|sect+tant|

∫sec³tdt=(secttant+ln|sect+tant|)/2+C
反带回得:
∫(1+x^2)^1/2dx
=(x√(1+x^2)+ln|x+√(1+x^2)|)/2+C