已知函数f(x)满f(x)=f′(1)ex-1-f(0)x+12x2;(1)求f(x)的解析式及单调区间;(2)若f(x)≥12

2024-12-03 12:57:52
推荐回答(1个)
回答1:

(1)f(x)=f′(1)ex?1?f(0)x+

1
2
x2?f′(x)=f′(1)ex?1?f(0)+x
令x=1得:f(0)=1
f(x)=f′(1)ex?1?x+
1
2
x2
令x=0,得f(0)=f'(1)e-1=1解得f'(1)=e
故函数的解析式为f(x)=ex?x+
1
2
x2

令g(x)=f'(x)=ex-1+x
∴g'(x)=ex+1>0,由此知y=g(x)在x∈R上单调递增
当x>0时,f'(x)>f'(0)=0;当x<0时,有
f'(x)<f'(0)=0得:
函数f(x)=ex?x+
1
2
x2
的单调递增区间为(0,+∞),单调递减区间为(-∞,0)
(2)f(x)≥
1
2
x2+ax+b?h(x)=ex?(a+1)x?b≥0
得h′(x)=ex-(a+1)
①当a+1≤0时,h′(x)>0?y=h(x)在x∈R上单调递增x→-∞时,h(x)→-∞与h(x)≥0矛盾
②当a+1>0时,h′(x)>0?x>ln(a+1),h'(x)<0?x<ln(a+1)
得:当x=ln(a+1)时,h(x)min=(a+1)-(a+1)ln(a+1)-b≥0,即(a+1)-(a+1)ln(a+1)≥b
∴(a+1)b≤(a+1)2-(a+1)2ln(a+1),(a+1>0)
令F(x)=x2-x2lnx(x>0),则F'(x)=x(1-2lnx)
F′(x)>0?0<x<
e
,F′(x)<0?x>
e

x=
e
时,F(x)max
e
2

即当a=
e
?1,b=
e
2
时,(a+1)b的最大值为
e
2