高次利用求导求函数的单调性:(f(x))'=-x^2+4ax-3a^2 令(f(x))'=0 解得x=3a或x=a 所以当x=3a,x=a时,f(x)可取得极值 f(a)=-4/3a^3+a当x<=3a时,(f(x))'<0,f(x)递减 ;当3aa时,(f(x))'<0,f(x)递减