先序遍历和后序遍历是什么

2025-01-20 07:15:18
推荐回答(3个)
回答1:

1、先序遍历也叫做先根遍历、前序遍历,可记做根左右(二叉树父结点向下先左后右)。

首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树,如果二叉树为空则返回。

例如,下图所示二叉树的遍历结果是:ABDECF

2、后序遍历首先遍历左子树,然后遍历右子树,最后访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。即:

若二叉树为空则结束返回,

否则:

(1)后序遍历左子树

(2)后序遍历右子树

(3)访问根结点

如右图所示二叉树

后序遍历结果:DEBFCA

已知前序遍历和中序遍历,就能确定后序遍历。

扩展资料:

图的遍历算法主要有两种,

一种是按照深度优先的顺序展开遍历的算法,也就是深度优先遍历;

另一种是按照宽度优先的顺序展开遍历的算法,也就是宽度优先遍历。宽度优先遍历是沿着图的深度遍历图的所有节点,每次遍历都会沿着当前节点的邻接点遍历,直到所有点全部遍历完成。

如果当前节点的所有邻接点都遍历过了,则回溯到上一个节点,重复这一过程一直到已访问从源节点可达的所有节点为止。

如果还存在没有被访问的节点,则选择其中一个节点作为源节点并重复以上过程,直到所有节点都被访问为止。

利用图的深度优先搜索可以获得很多额外的信息,也可以解决很多图论的问题。宽度优先遍历又名广度优先遍历。通过沿着图的宽度遍历图的节点,如果所有节点均被访问,算法随即终止。宽度优先遍历的实现一般需要一个队列来辅助完成。 

宽度优先遍历和深度优先遍历一样也是一种盲目的遍历方法。也就是说,宽度遍历算法并不使用经验法则算法, 并不考虑结果的可能地址,只是彻底地遍历整张图,直到找到结果为止。图的遍历问题分为四类:

1、遍历完所有的边而不能有重复,即所谓“欧拉路径问题”(又名一笔画问题);

2、遍历完所有的顶点而没有重复,即所谓“哈密顿路径问题”。

3、遍历完所有的边而可以有重复,即所谓“中国邮递员问题”;

4、遍历完所有的顶点而可以重复,即所谓“旅行推销员问题”。

对于第一和第三类问题已经得到了完满的解决,而第二和第四类问题则只得到了部分解决。第一类问题就是研究所谓的欧拉图的性质,而第二类问题则是研究所谓的哈密顿图的性质。

参考资料来源:百度百科-遍历

参考资料来源:百度百科-后序遍历

参考资料来源:百度百科-先序遍历

回答2:

这是数据结构当中对结点进行访问

遍历分分先序、中序、后序

先序:先访问根结点、左结点、右结点

中序:先访问左结点、根结点、右结点

后序:先访问左结点、右结点、根结点

先序:ABC

                                                                                       中序:BAC

                                                                                         后序:BCA

回答3:

先序:根左右
后序:左右根