z1=2(cos30°+isin30°)=2e^(iπ/6)由于z2的模为2,设z2=2e^(iθ)则 z1×z2^2=2e^(iπ/6)×4e^(2iθ)=8e^[i(2θ+π/6)]=8[cos(2θ+π/6)+isin(2θ+π/6)]由于其为虚部为整数的纯虚数,即要求 cos(2θ+π/6)=0 sin(2θ+π/6)>0 而当cos(2θ+π/6)=0 时, sin(2θ+π/6)=1或-1(不合)综上 z1×z2^2=8i