求球面x²+y²+z²=4a²含在柱面x²+y²=2ax(a>0)内部的面积A,这个题怎么确定θ和r的范围?
解:积分域:x²+y²=2ax,即有(x-a)²+y²=a²,这是一个园心在(a,0),半径r=a的园域。
z²=4a²-x²-y²;∂z/∂x=-x/z,∂z/∂y=-y/z;
A=[Dxy]∫∫√(1+x²/z²+y²/z²)dxdy=[Dxy]∫∫√[1+(x²+y²)/(4a²-x²-y²)]dxdy=[Dxy]∫∫√[4a²/(4a²-x²-y²)]dxdy
=[Dxy]2a∫∫√[1/(4a²-x²-y²)]dxdy
换成极坐标:x=ρcosθ,y=ρsinθ;积分域[Dρθ]:ρ²=2aρcosθ,即ρ=2acosθ;-π/2≦θ≦π/2;
A=2a∫∫[Dρθ][1/√(4a²-ρ²)]ρdρdθ=2a∫[-π/2,π/2]dθ∫[0,2acosθ](-1/2)d(4a²-ρ²)/[√(4a²-ρ²)]dρ
=2a∫[-π/2,π/2]dθ[-√(4a²-ρ²)]︱[0,2acosθ]=2a∫[-π/2,π/2][2a(1-sinθ)]dθ
=4a²(θ+cosθ)︱[-π/2,π/2]=4πa²
转化为极坐标
x=rcosθ y=rsinθ
所以x^2+y^2=2ax为
(rcosθ)^2+(rsinθ)^2=2arcosθ
r^2=2arcosθ
r=2acosθ
过原点作x^2+y^2=2ax的切线,切线与x轴夹角为θ范围
所以θ∈[-π/2,π/2]
希望对你有帮助