已知数列{an}的前n项和Sn满足:Sn=3an-n,(1)设bn=an+1,证明数列{bn}为等比数列,并求数列{an}的通项

2025-01-21 11:59:47
推荐回答(1个)
回答1:

解答:(13分)
(1)证明:∵Sn=3an-n,
∴n≥2时,Sn=3an-n①,Sn-1=3an-1-(n-1),②
①-②得an=3an-3an-1-1,
an+1=

3
2
(an?1+1)
∵bn=an+1,∴bn
3
2
bn?1

n≥2,数列{bn}为公比为
3
2
的等比数列,
当n=1时,S1=3a1-1=a1,解得a 1
1
2
b 1
3
2

∴数列{bn}为等比数列,且bn=(
3
2
)n

(2)解:由(1)得an=(
3
2
)n?1
nan=n(
3
2
)n?n

Tn=1?(
3
2
)1+2?(
3
2
)2+…+n?(
3
2
)n?(1+2+…+n)
,③
3
2
Tn=1?(
3
2
)2+2?(
3
2
)3+…+n?(
3
2
)n+1?
3
2
(1+2+…+n)
,④
③-④化简得:?
1
2
Tn=?3+3(
3
2
)n+1?
3
2
n?(
3
2
)n+
1
4
n(n+1)

Tn=6+3(n?2)(
3
2
)n?
1
2
n(n+1)