最早用几何方法证明了勾股定理的人是三国的谁

2025-01-18 18:21:33
推荐回答(5个)
回答1:

最早用几何方法证明了勾股定理的人是商高 ,西周初数学家。

勾股定理简史

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。

以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

扩展资料

勾股定理发现的意义:

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

回答2:

在全球,最早给出勾股定理的人,是中国西周时期的数学家商高;
在中国,最早给出勾股定理证明的是三国时期吴国的数学家赵爽。

回答3:

一般公认最早证明勾股定理的是古希腊的毕达哥拉斯,但他的证明过程失传。
现存有确凿证据的最早证明来自古希腊的欧几里得,在其几何学著作《几何原本》中有详细的几何证明过程。三国赵爽要比欧几里得晚六七百年。
另外商高的话,也不能说明他提出勾股定理。

回答4:

在中国,最早给出勾股定理证明的是三国时期吴国的数学家赵爽。
据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。该书简明扼要地总结出中国古代勾股算术的深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。

回答5:

商高 ,西周初数学家。

勾股定律

约与周公旦同时期人。在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。早于毕达哥拉斯定理五百到六百年。

数学成就据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。《周髀算经》中记载了这样一件事——一次周公问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘、除计算出来的。
这里的“矩”原是指包含直角的作图工具。这说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形。《周髀算经》并有“勾股各自乘,并而开方除之”的记载,说明当时已普遍使用了勾股定理。勾股定理是中国数学家的独立发明,在中国早有记载。《周髀算经》还记载了矩的用途:“周公曰:大哉言数!请问用矩之道。商高曰:平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。”
据此可知,当时善于用矩的商高已知道用相似关系的测量术。