如何证明正弦定理和余弦定理用于所有三角形都成立

2025-01-19 14:33:43
推荐回答(1个)
回答1:

1.三角形的正弦定理证明:
  在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H
  CH=a·sinB
  CH=b·sinA
  ∴a·sinB=b·sinA
  得到
  a/sinA=b/sinB
  同理,在△ABC中,
  b/sinB=c/sinC
  步骤2.
  证明a/sinA=b/sinB=c/sinC=2R:
  如图,任意三角形ABC,作ABC的外接圆O.
  作直径BD交⊙O于D.
  连接DA.
  因为直径所对的圆周角是直角,所以∠DAB=90度
  因为同弧所对的圆周角相等,所以∠D等于∠C.
  所以c/sinC=c/sinD=BD=2R
  a/SinA=BC/SinD=BD=2R
  类似可证其余两个等式。

2.三角形的余弦定理证明:
平面几何证法:
  在任意△ABC中
  做AD⊥BC.
  ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
  则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
  根据勾股定理可得:
  AC^2=AD^2+DC^2
  b^2=(sinB*c)^2+(a-cosB*c)^2
  b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
  b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
  b^2=c^2+a^2-2ac*cosB
  cosB=(c^2+a^2-b^2)/2ac