用数学归纳法证明1+2+3+…+n =n(n+1)⼀2

急求……
2025-01-20 19:21:56
推荐回答(2个)
回答1:

1、当n=1时,1=1,成立
2、设当n=k时,1+2+3+4+···+k=k(k+1)/2
则 当n=k+1时,1+2+····+k+(k+1)=k(k+1)/2+k+1=(k+1)(k+2)/2,成立
综上所述,原命题成立

回答2:

n=1
LS =1
RS=1
n=1 is true
Assume n=k is true
1+2+3+..+k = k(k+1)/2
for n=k+1
LS
=1+2+3+..+k+(k+1)
= k(k+1)/2+ (k+1)
=(k+1)(k+2)/2 =RS
By principle of MI , it is true for all n