n=3时显然成立
若n^(n+1)>(n+1)^n (1)
下面证(n+1)^(n+2)>(n+2)^(n+1) (2)
反证:若(n+2)^(n+1)≥(n+1)^(n+2) (3)
(1)与(3)相乘得:
(n^2+2n)^(n+1)>(n+1)^(2n+2)
即n^2+2n>(n+1)^2=n^2+2n+1 矛盾
原归纳假设得证
设N=K,
当N=K+1时,代入原式,把式子整理成K+1的形式,你试一下
当n=k时,有:
(k)^(k+1)>(k+1)^k 【n^(k+2)表示n的k+2次方】
则当n=k+1时,
(k+1)^(k+2)
=[k^(k+1)]×[(k+1)^(k+2)]/[k^(k+1)]
>[(k+1)^k]×[k+1]×[(k+2)/(k)]^(k+1)
=[(k+1)^(k+1)]×[(k+2)/k]^(k+1)
=[(k+1)×(k+2)/k]^(k+1)
考虑:(k+1)(k+2)/k与k+2的大小,
(k+1)(k+2)-k(k+2)=k+3>0,则:
(k+1)(k+2)-k(k+2)>0,即:(k+1)(k+2)/k>k+2,则:
[(k+1)×(k+2)/k]^(k+1)>(k+2)^(k+1)
也就是说,当n=k+1时成立。