设u=2019x,则f(x)=sin(u+π/4)+cos(u-π/4)=(sinu+cosu)/√2+(cosu+sinu)/√2=√2(sinu+cosu)=2sin(u+π/4),所以M=2,u+π/4=(2k土1/2)π时f(x)取最值,k为整数,2019x=(2k+1/4)π,或(2k-3/4)π,所以|m-n|的最小值=π/2019,M|m-n|的最小值=2π/2019.选B.
数学工具多多益善如图所示请采纳谢谢。