证明当0<x<1时,arcsin((1-x^2)^1⼀2)+arctan(x⼀((1-x^2)^1⼀2)=π⼀2

2024-11-09 00:56:35
推荐回答(1个)
回答1:

解析:
令α=arcsin[(1-x²)^½ ,β=arctan[x/(1-x²)^½],其中0<α<π/2,0<β≤π/2
则sinα=(1-x²)^½,且tanβ=x/(1-x²)^½
所以:cosα=(1-sin²α)^½=x
而tanβ=sinβ/cosβ=x/(1-x²)^½且sin²β+cos²β=1,sinβ>0,cosβ>0
则可得:sinβ=x,cosβ=(1-x²)^½
所以:cos(α+β)=cosα*cosβ-sinα*sinβ
=x*(1-x²)^½ -(1-x²)^½ *x
=0
因为0<α<π/2,0<β<π/2,则0<α+β<π
所以可得:α+β=π/2
即证得:arcsin[(1-x²)^½ + arctan[x/(1-x²)^½] =π/2