五年级上册奥数题及答案(简单的)

悬赏分:15 |
2024-11-12 07:33:44
推荐回答(5个)
回答1:

1、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,苍蝇有6只脚和1对翅膀。现有3种昆虫共18只,共有118只脚和20对翅膀,问:每种虫各几只?算式:(8×18-118)÷(8-6)=13(只) 18-13=5(只) 118-8×5=78(只) (20-13×1)÷(2-1)=7(只) 解析:(8×18-118)÷(8-6)意思是:如果18只昆虫中都是蜘蛛,那么有8×18只脚,比118多出的脚就是蜻蜓和苍蝇的脚,除以(8-6)是蜘蛛比蜻蜓多的脚数,所得的数是蜻蜓和蜘蛛的只数。

18-13得的是蜘蛛有多少只,18-5×8得的是除去蜘蛛的脚数,蜻蜓和苍蝇一共有多少只脚。

(20-13×1)意思是20对翅膀中全是苍蝇的翅膀多出的翅膀就是蜻蜓的,÷(2-1)是蜻蜓比苍蝇多翅膀的对数,得出的是蜻蜓的只数,13-7得出是苍蝇的只数。

2、有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。算式:7×18-6×19=126-114=12
6*19-5*20=114-100=14 解析: 去掉的两个数是12和14它们的乘积是12*14=168

3、甲乙两人参加知识竞赛,每答对一题得20分,答错一题扣12分,两人各答了10题,共得208分,其中甲比乙多得64分。甲乙各做对了几道题? 算式:乙得分(208-64)/2=72
甲得分208-72=136
甲错(20*10-136)/(20+12)=2
甲对10-2=8
乙错(20*10-72)/(20+12)=4
乙对10-4=6
甲答对8题,乙答对6题。

4、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套? 算式:这道题可以用方程解:解:设加工后乙种部件有x个。
3/5X + 1/4X + 9/3X=77
x=20
甲:0.6×20=12(人) 乙: 0.25×20=5(人) 丙: 3×20==60(人)
答:甲12人,乙5人,丙60人。

5、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁? 算式:这道题可以用方程解:解:设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3
x=18
弟弟30-18=12(岁)
答:哥哥18岁,弟弟12岁。
已经很多了 望采纳

回答2:

1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间。
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。
分析:此题与上题的思路一样。
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键。
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。
解:设需要x块。
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280块。

解:设需要y块。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。
解:设这艘轮船逆风行驶了x小时。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。
或者用方程解:
解:设甲乙两地的公路长x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。
解:设需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?

14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?

16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?

17. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?
《 40÷4=10 10×10×40÷1000=4》

回答3:

1、分数的分子和分母同时乘以或除以一个数(0除外),分数大小不变。


2、两个面积相等的三角形,底和高也相等。


3、假如
是一个假分数,那么a一定大于b。


4、一个分数的分子和分母都是质数,它一定是最简分数。


5、如果A是奇数,那么1093+89+A+25的结果还是奇数。


二、我会选择。5分
1、算一个上底是acm,下底是bcm,高是3cm的梯形面积,应该使用(
)公式。
A、S=ab
B、S=3a÷2
C、S=3(a+b)÷2
D、S=ab÷2
2、在60=12×5中,12和5是60的(
)。
A、倍数
B、偶数
C、质数
D、因数
3、
分子加上12,分数的大小不变,分母应该加上(
)。
A、12
B、36
C、27
D、不能做。
4、3、如图,甲摸到白球得1分,乙摸到黑球得1分,在(
)箱中摸最公平。
5、小军从家出发去书店买书,当他走了大约一半路程时。想起忘了带钱。于是他回家取钱,然后再去书店,买了几本书后回家。下面(
)幅图比较准确地反映了小军的行为。
A
B
C
三、数学迷宫。26分
1、最小的自然数是(
),最小的奇数是(
),最小的质数是(
),最小的合数是(
)。
2、一个三角形的面积是24cm
,与它等底等高的平行四边形的面积是(
)cm

3、
的分数单位是(
),有(
)个这样的单位,再去掉(
)个分数单位就是3。
4、把5米长的绳子平均分成8段,每段长(
),每段占全长的(
),每段是5米的(
)。
5、(
)÷8=
=0.375=9÷(
)=
6、填质数:21=(
)+(
);
(
)=(
)×(
)。
7、要把36个球装在盒子里,每个盒子装得同样多,有(
)种装法。
8、今年在多哈举行的亚运会上,中国代表团共夺得316枚奖牌,其中金牌有165个,银牌有88个,其余的是铜牌。金牌、银牌、铜牌各占奖牌总数的



9、右面平行四边形的面积是40平方厘米,
涂色部分三角形的面积是(
)平方厘米。
10、下面一组图形的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来.
四、神机妙算。28分(6+5+6+6+5)
1、找出下面各组数的最大公因数和最小公倍数。
28和7
5和8
8和9
2、把假分数化成带分数或把带分数化成假分数。

3、计算下面各题,怎样计算简便就怎样计算。
2
-(






4、解下列方程。
5Y-2Y=18
+X=
X-

5、求阴影部分面积。(单位:cm)
五、解决问题:36分(4+4+4+4+5+5+5+5)
1、一块平行四边形广告牌,底长14cm,高3.2cm,如果每平方米用油漆0.7千克,这块广告牌至少用多少千克油漆?
3、36个红球与24个黄球,大小一样,
分别装在同一种盒子里,每种球正好装完,
每盒最多能装几个?这时共需几个盒子?
5、甲乙两个工程队修一条长1400米的公路,他们从两端同时开工,甲队每天修80米,乙队每天修60米,多少天后能够修完这条公路?(用方程解答)
7、有20张5元和10元的人民币,一共是175元,5元和10的人民币各有多少张?
2、某校春季植树100棵,活了93棵,活了的棵树和未成活的棵数各占总数的几分之几?
4、一条拦河堤的横截面是梯形,
上面宽4cm,下面宽7cm,高1.8cm,
求这个拦河坝的横截面面积。
6、一张正方形红纸,边长66厘米,可用它做成底是33厘米,高是22厘米的三角形小红旗,最多可以做多少面?
8、小明家的客厅长6米,宽4米,现在准备重新换地砖。下面有两种规格的地砖,选择哪种地砖最省钱?
A型砖:边长30cm,单价27元/块
B型砖:边长50cm,单价60元/块

回答4:

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案

1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人

2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)

3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90

回答5:

1.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
答案:反向,二人的速度和是:500/1=500 同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分 乙的速度是:(500-50)/2=225米/分
2.一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇问:小明环行一周要多少分钟?
答案:由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。

所以小强的速度是:(1/12)/(1+1。5)=1/30 即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分
3.某中学七年级举行足球赛,规定:胜一场3分,平一场1分,负一场0分,七年1班比赛中共积8分,其中胜与平的场数相同,负比胜多1场,胜,平,负各几场?
答案:解:设胜的场数为x
3x+1x+0*(x+1)=8 4x=8 x=2 胜2场 平2场
负3场
4.xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?
答案:因为个位是9,所以个位相加没有进位个位 即:个位数的和Y+W=9,而不会是19,29,39 所以十位数的和X+Z=13于是:x+y+z+w=22