∫x^2arctanx/(1+x^2)dx=∫(x^2+1-1)arctanx/(1+x^2)dx=∫arctanxdx-∫arctanx/(1+x^2)dx=xarctanx-∫ x/(1+x^2)dx-∫arctanxd (arctanx)=xarctanx-(1/2)∫ 1/(1+x^2)d(x^2)-(1/2)(arctanx)^2=xarctanx-(1/2)ln(1+x^2)-(1/2)(arctanx)^2+C