解:∵x3+x2+x+1=0
∴1 + x + x2 + x3=0
x4(1 + x + x2 + x3)=0
……………
x1992(1 + x + x2 + x3)=0
∴1 + x + x2 + x3 + ... x2003
=(1 + x + x2 + x3) + x4(1 + x + x2 + x3) + x8(1 + x + x2 + x3) + …… + x2000(1 + x + x2 + x3)
=0+0+……+0
=0
由等式知x3+x2+x1=-1 则只有在x=-1时才成立
所以1+x+x2+x3+……+x2003=2000*(-1)=-2000