楼上乱回答,可以无视。
如果A和B是方阵,那么|AB|=|A||B|,这个就是所谓的“行列式乘积定理”,一般用初等变换来证明。
更一般的结论是Cauchy-Binet公式,不过在你搞清楚行列式乘积定理的证明之前也没必要去看Cauchy-Binet公式。
这是定义的运算法则,跟向量一个意思。
我估计你所说的“共轭矩阵”就是所谓的Hermite矩阵。
定义:
如果A(i,j)=A(j,i),那么称A是对称矩阵。
如果A(i,j)=conj(A(j,i)),那么称A是Hermite矩阵。
对于实矩阵而言,对称矩阵和Hermite矩阵是一回事,通常称为(实)对称矩阵。
对于一般的复矩阵而言,复对称矩阵和Hermite矩阵则有非常本质的不同。
Hermite矩阵和实对称矩阵有大量的共同性质,最根本的性质是谱分解定理。而对于复对称矩阵而言,它的谱可以具有任何分布。
但是Hermite矩阵也没有完全继承实对称矩阵的性质,比如任何实矩阵可以分解成两个实对称矩阵的乘积,但是复矩阵不一定能分解成两个Hermite矩阵的乘积,不过一定能分解成两个复对称矩阵的乘积。
那个式子是对的