设f✀✀(x)存在,求下列函数的二阶函数d^2y⼀dx^2: (1)y=f(x^2)

2025-01-20 13:21:20
推荐回答(2个)
回答1:

解:一定要注意外层求导后,要内层求导
y=f(x^2),dy/dx=2xf'(x^2)
所以d^2y/dx^2=2f'(x^2)+2xf''(x^2)2x=2f'(x^2)+4x^2f''(x^2)
还有问题继续讨论
望您能采纳

回答2:

dy/dx = 2xf'(x^2)
d^2y/dx^2 = d(2xf'(x^2))/dx = 2f'(x^2) + 4x^2f''(x^2)

这些都是套用复合函数导数公式而已,lz应该能自己搞出来