CPU 参数详解
CPU是Central Processing Unit(中央处理器)的缩写,CPU一般由逻辑运算单元、控制单元和存储单元组成。在逻辑运算和控制单元中包括一些寄存器,这些寄存器用于CPU在处理数据过程中数据的暂时保存。大家需要重点了解的CPU主要指标/参数有:
1.主频
主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率,例如我们常说的P4(奔四)1.8GHz,这个1.8GHz(1800MHz)就是CPU的主频。一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快。主频=外频X倍频。
此外,需要说明的是AMD的Athlon XP系列处理器其主频为PR(Performance Rating)值标称,例如Athlon XP 1700+和1800+。举例来说,实际运行频率为1.53GHz的Athlon XP标称为1800+,而且在系统开机的自检画面、Windows系统的系统属性以及WCPUID等检测软件中也都是这样显示的。
2.外频
外频即CPU的外部时钟频率,主板及CPU标准外频主要有66MHz、100MHz、133MHz几种。此外主板可调的外频越多、越高越好,特别是对于超频者比较有用。
3.倍频
倍频则是指CPU外频与主频相差的倍数。例如Athlon XP 2000+的CPU,其外频为133MHz,所以其倍频为12.5倍。
4.接口
接口指CPU和主板连接的接口。主要有两类,一类是卡式接口,称为SLOT,卡式接口的CPU像我们经常用的各种扩展卡,例如显卡、声卡等一样是竖立插到主板上的,当然主板上必须有对应SLOT插槽,这种接口的CPU目前已被淘汰。另一类是主流的针脚式接口,称为Socket,Socket接口的CPU有数百个针脚,因为针脚数目不同而称为Socket370、Socket478、Socket462、Socket423等。
5.缓存
缓存就是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度极快,所以又被称为高速缓存。与处理器相关的缓存一般分为两种——L1缓存,也称内部缓存;和L2缓存,也称外部缓存。例如Pentium4“Willamette”内核产品采用了423的针脚架构,具备400MHz的前端总线,拥有256KB全速二级缓存,8KB一级追踪缓存,SSE2指令集。
内部缓存(L1 Cache)
也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率,内置的L1高速缓存的容量和结构对CPU的性能影响较大,L1缓存越大,CPU工作时与存取速度较慢的L2缓存和内存间交换数据的次数越少,相对电脑的运算速度可以提高。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大,L1缓存的容量单位一般为KB。
外部缓存(L2 Cache)
CPU外部的高速缓存,外部缓存成本昂贵,所以Pentium 4 Willamette核心为外部缓存256K,但同样核心的赛扬4代只有128K。
6.多媒体指令集
为了提高计算机在多媒体、3D图形方面的应用能力,许多处理器指令集应运而生,其中最著名的三种便是Intel的MMX、SSE/SSE2和AMD的3D NOW!指令集。理论上这些指令对目前流行的图像处理、浮点运算、3D运算、视频处理、音频处理等诸多多媒体应用起到全面强化的作用。
7.制造工艺
早期的处理器都是使用0.5微米工艺制造出来的,随着CPU频率的增加,原有的工艺已无法满足产品的要求,这样便出现了0.35微米以及0.25微米工艺。制作工艺越精细意味着单位体积内集成的电子元件越多,而现在,采用0.18微米和0.13微米制造的处理器产品是市场上的主流,例如Northwood核心P4采用了0.13微米生产工艺。而在2003年,Intel和AMD的CPU的制造工艺会达到0.09毫米。
8.电压(Vcore)
CPU的工作电压指的也就是CPU正常工作所需的电压,与制作工艺及集成的晶体管数相关。正常工作的电压越低,功耗越低,发热减少。CPU的发展方向,也是在保证性能的基础上,不断降低正常工作所需要的电压。例如老核心Athlon XP的工作电压为1.75v,而新核心的Athlon XP其电压为1.65v
9.封装形式
所谓CPU封装是CPU生产过程中的最后一道工序,封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。
10.整数单元和浮点单元
ALU—运算逻辑单元,这就是我们所说的“整数”单元。数学运算如加减乘除以及逻辑运算如“OR、AND、ASL、ROL”等指令都在逻辑运算单元中执行。在多数的软件程序中,这些运算占了程序代码的绝大多数。
而浮点运算单元FPU(Floating Point Unit)主要负责浮点运算和高精度整数运算。有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。
整数处理能力是CPU运算速度最重要的体现,但浮点运算能力是关系到CPU的多媒体、3D图形处理的一个重要指标,所以对于现代CPU而言浮点单元运算能力的强弱更能显示CPU的性能。
CPU内核:
核心(Die)又称为内核,是CPU最重要的组成部分。CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。
为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。
不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium 4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的。每一种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um以及0.09um等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如Socket 370,Socket A,Socket 478,Socket T,Slot 1、Socket 940等等)、前端总线频率(FSB)等等。因此,核心类型在某种程度上决定了CPU的工作性能。
一般说来,新的核心类型往往比老的核心类型具有更好的性能(例如同频的Northwood核心Pentium 4 1.8A GHz就要比Willamette核心的Pentium 4 1.8GHz性能要高),但这也不是绝对的,这种情况一般发生在新核心类型刚推出时,由于技术不完善或新的架构和制造工艺不成熟等原因,可能会导致新的核心类型的性能反而还不如老的核心类型的性能。例如,早期Willamette核心Socket 423接口的Pentium 4的实际性能不如Socket 370接口的Tualatin核心的Pentium III和赛扬,现在的低频Prescott核心Pentium 4的实际性能不如同频的Northwood核心Pentium 4等等,但随着技术的进步以及CPU制造商对新核心的不断改进和完善,新核心的中后期产品的性能必然会超越老核心产品。
CPU核心的发展方向是更低的电压、更低的功耗、更先进的制造工艺、集成更多的晶体管、更小的核心面积(这会降低CPU的生产成本从而最终会降低CPU的销售价格)、更先进的流水线架构和更多的指令集、更高的前端总线频率、集成更多的功能(例如集成内存控制器等等)以及双核心和多核心(也就是1个CPU内部有2个或更多个核心)等。CPU核心的进步对普通消费者而言,最有意义的就是能以更低的价格买到性能更强的CPU。
在CPU漫长的历史中伴随着纷繁复杂的CPU核心类型,以下分别就Intel CPU和AMD CPU的主流核心类型作一个简介。主流核心类型介绍(仅限于台式机CPU,不包括笔记本CPU和服务器/工作站CPU,而且不包括比较老的核心类型)。
Tualatin
这也就是大名鼎鼎的“图拉丁”核心,是Intel在Socket 370架构上的最后一种CPU核心,采用0.13um制造工艺,封装方式采用FC-PGA2和PPGA,核心电压也降低到了1.5V左右,主频范围从1GHz到1.4GHz,外频分别为100MHz(赛扬)和133MHz(Pentium III),二级缓存分别为512KB(Pentium III-S)和256KB(Pentium III和赛扬),这是最强的Socket 370核心,其性能甚至超过了早期低频的Pentium 4系列CPU。
Willamette
这是早期的Pentium 4和P4赛扬采用的核心,最初采用Socket 423接口,后来改用Socket 478接口(赛扬只有1.7GHz和1.8GHz两种,都是Socket 478接口),采用0.18um制造工艺,前端总线频率为400MHz, 主频范围从1.3GHz到2.0GHz(Socket 423)和1.6GHz到2.0GHz(Socket 478),二级缓存分别为256KB(Pentium 4)和128KB(赛扬),注意,另外还有些型号的Socket 423接口的Pentium 4居然没有二级缓存!核心电压1.75V左右,封装方式采用Socket 423的PPGA INT2,PPGA INT3,OOI 423-pin,PPGA FC-PGA2和Socket 478的PPGA FC-PGA2以及赛扬采用的PPGA等等。Willamette核心制造工艺落后,发热量大,性能低下,已经被淘汰掉,而被Northwood核心所取代。
Northwood
这是目前主流的Pentium 4和赛扬所采用的核心,其与Willamette核心最大的改进是采用了0.13um制造工艺,并都采用Socket 478接口,核心电压1.5V左右,二级缓存分别为128KB(赛扬)和512KB(Pentium 4),前端总线频率分别为400/533/800MHz(赛扬都只有400MHz),主频范围分别为2.0GHz到2.8GHz(赛扬),1.6GHz到2.6GHz(400MHz FSB Pentium 4),2.26GHz到3.06GHz(533MHz FSB Pentium 4)和2.4GHz到3.4GHz(800MHz FSB Pentium 4),并且3.06GHz Pentium 4和所有的800MHz Pentium 4都支持超线程技术(Hyper-Threading Technology),封装方式采用PPGA FC-PGA2和PPGA。按照Intel的规划,Northwood核心会很快被Prescott核心所取代。
Prescott
这是Intel最新的CPU核心,目前还只有Pentium 4而没有低端的赛扬采用,其与Northwood最大的区别是采用了0.09um制造工艺和更多的流水线结构,初期采用Socket 478接口,以后会全部转到LGA 775接口,核心电压1.25-1.525V,前端总线频率为533MHz(不支持超线程技术)和800MHz(支持超线程技术),主频分别为533MHz FSB的2.4GHz和2.8GHz以及800MHz FSB的2.8GHz、3.0GHz、3.2GHz和3.4GHz,其与Northwood相比,其L1 数据缓存从8KB增加到16KB,而L2缓存则从512KB增加到1MB,封装方式采用PPGA。按照Intel的规划,Prescott核心会很快取代Northwood核心并且很快就会推出Prescott核心533MHz FSB的赛扬。
Athlon XP的核心类型
Athlon XP有4种不同的核心类型,但都有共同之处:都采用Socket A接口而且都采用PR标称值标注。
Palomino
这是最早的Athlon XP的核心,采用0.18um制造工艺,核心电压为1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz。
Thoroughbred
这是第一种采用0.13um制造工艺的Athlon XP核心,又分为Thoroughbred-A和Thoroughbred-B两种版本,核心电压1.65V-1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz和333MHz。
Thorton
采用0.13um制造工艺,核心电压1.65V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为333MHz。可以看作是屏蔽了一半二级缓存的Barton。
Barton
采用0.13um制造工艺,核心电压1.65V左右,二级缓存为512KB,封装方式采用OPGA,前端总线频率为333MHz和400MHz。
新Duron的核心类型
AppleBred
采用0.13um制造工艺,核心电压1.5V左右,二级缓存为64KB,封装方式采用OPGA,前端总线频率为266MHz。没有采用PR标称值标注而以实际频率标注,有1.4GHz、1.6GHz和1.8GHz三种。
Athlon 64系列CPU的核心类型
Clawhammer
采用0.13um制造工艺,核心电压1.5V左右,二级缓存为1MB,封装方式采用mPGA,采用Hyper Transport总线,内置1个128bit的内存控制器。采用Socket 754、Socket 940和Socket 939接口。
Newcastle
其与Clawhammer的最主要区别就是二级缓存降为512KB(这也是AMD为了市场需要和加快推广64位CPU而采取的相对低价政策的结果),其它性能基本相同
cpu接口:
Slots、Sockets 和 Slocket 都是用来把 CPU 安装在主板上的。在 1981 年 IBM 的 PC 机刚出炉时,CPU 8086 是直接焊在主板上的,接着的 286、386 也都是焊在主板上,很不好拆卸,对普通用户来说一旦买了一台计算机就基本上没有什么升级的余地了。到了 486 以后,处理器厂商开始采用插座或插槽来安装 CPU。目前市场上的各种 CPU 种类繁多,所用的插座和插槽也很多,本文就给大家介绍一下各种 CPU 的插座和插槽。
Socket 1:Intel 开发的最古老的 CPU 插座,用于 486 芯片。有 169 个脚,电压为 5V。最多只能支持 DX4 的倍频。
Socket 2:Intel 在 Socket 1 的基础上作了小小的改进得到 Socket 2。Socket 2有 238 个脚,电压仍为 5V。虽然它还是 486 的插座,但只要稍作修改就可以支持 Pentium 了。
Socket 3:Socket 3 是在 Socket 2 的基础上发展起来的。它有 237 个脚,电压为 5V,但可以通过主板上的跳线设为 3.3V。它支持 Socket 2 的所有 CPU,还支持 5x86。它是最后一种 486 插座。
Socket 4:Pentium 时代的 CPU 插座从 Socket 4 开始。它有 273 个脚,工作电压为 5V。正是因为它的工作电压太高,所以它并没有怎么流行就被 Socket 5 取代了。Socket 4 只能支持 60-66MHz 的 Pentium。
Socket 5:Socket 5 有 320 个脚,工作电压为 3.3V。它支持从 75MHz 到 133MHz 的 Pentium。Socket 5 插座在早期的 Pentium 中非常流行。
Socket 6:看名字你也许会认为这是一个 Pentium 插座,但实际上 Socket 6 是一个 486 插座。它有 235 个脚,工作电压为 3.3V,比 Socket 3 稍微先进一点。不过随着 Pentium 的流行,486 很快就不再是市场的主流,Socket 6 也很快就被人遗忘了。
Socket 7:Socket 7是到目前为止最流行和应用最广泛的CPU插座。它 有321个脚,工作电压范围为2.5-3.3V。它支持从75MHz开始的所有Pentium处理器,包括Pentium MMX,K5, K6, K6-2, K6-3, 6x86, M2和M3。Socket 7是由Intel发布的,事实上已成为当时的工业标准,可以支持IDT、 AMD和Cyrix的第六代CPU。但Intel在开发自己的第六代CPU-Pentium II是,却决定舍弃Socket 7,另外开创一个局面。
Socket 8:Socket 8 是 Pentium Pro 专用的插座。它有 387 个脚,工作电压为 3.1/3.3V。它还为双处理器的主板做了特殊的设计。但随着市场主流从 Pentium MMX 转向 Pentium II,Socket 8 很快就被遗忘了。
Socket 370 :Socket 370是Intel为赛扬A CPU提供的接口。其后,Intel 也在不断转变着策略,新千年随着Intel Coppermine系列CPU新P Ⅲ和新赛扬 Ⅱ(均为 Socket 370 结构设计)的推出, Socket 370接口的主板一改低端形象,逐渐成为CPU接口结构主板的主流。
Socket 423:早期的奔腾 4系列处理器都采用Socket423封装。
Socket 478:基于Northwood核心的奔腾 4处理器必须使用Socket478封装,采用0.13微米工艺加工。
Slot 1:Slot 1 的出现彻底改变了 Intel 的 CPU 插座一贯的形状。Intel 原来的 CPU 都是四方的,管脚在芯片的底部,安装时 CPU 插在主板的插座上。而 Pentium II 不再是四方的了,处理器芯片焊在一块电路板上,然后这块电路板再插到主板的插槽中,这个插槽就是 Slot 1。采用这种设计处理器内核和 L2 缓存之间的通信速度更快。Slot 1 有 242 个脚,工作电压为 2.8-3.3V。Slot 1 主要用于 P2,P3 和 Celeron(赛扬),另外还有 Socket 8 的转接卡用来安装 Pentium Pro。
Slot 2:Slot 2 是 Slot 1 的改进,主要用于 Xeon 系列处理器。Slot 2 有 330 个脚,它和 Slot 1 之间最大的区别就在于 Slot 1 的 CPU 和 L2 缓存只能以 CPU 工作频率的一半进行通信,而 Slot 2 允许 CPU 和 L2 缓存以 CPU 工作频率进行通信。
Socket 370:从名字就可以看出 Socket 370 插座有 370 个管脚。在 Intel 找到了把处理器内核和 L2 缓存很便宜的做在一起的方法之后,它的 CPU 插座从 Slot 回到了 Socket。Socket 370 是基于 Socket 7 的,它不过只是在插座的四边每一边加了一排管脚。首先采用 Socket 370 的是 PPGA 封装的 Celeron,接着是 FC-PGA 封装的 Pentium III 和 Celeron II。同样也有 Socket 370 到 Slot 1 的转接卡。目前 Intel 的主流 CPU 都是 Socket 370 类型的。
Slot A:由于 Intel 给 Slot 1 申请了很全面的专利,AMD 不能象从前那样照搬 Intel 的插座,所以 AMD 独立开发了 Slot A,Slot A 是 AMD 拥有独立知识产权的 CPU 插座,主要用于 Athlon 系列处理器。它的设计和 Slot 1 类似,但采用的协议不一样,它用的是 EV6 总线协议。采用 EV6 总线协议,CPU 和内存之间的工作频率可以达到 200MHz。目前随着 Athlon 处理器越来越流行,Slot A 的主板也越来越多。
Socket A:当 Intel 从 Slot 转回 Socket 时,AMD 也亦步亦趋,从 Slot A 转回了 Socket A。0.18 微米的 Athlon 和 Duron 都采用 Socket A 插座,它也支持 200MHz 以及 266MHz 的 EV6 总线。与 Socket 370 不同的是,Socket 370 CPU 可以直接用 Socket 7 的散热器,而 Socket A 的散热器要稍作修改。另外 AMD 没有提供 Socket A 到 Slot A 的转接卡。Socket A 有 462 个脚,它与 Socket 370 不兼容。目前 AMD 的主流 CPU 都是 Socket A 类型的。
Slockets:所谓的 Slocket 是 Slot 和 Socket 的结合体,从它的拼法上就可以看出。它实质上是一个Slot 1 到 Socket 370 的转接卡,在不同的电平和接口之间进行转换。有的 Slocket 可以插两个 CPU,还有的 Slocket 可以去除 CPU 的锁频,使超频更容易。
以上给大家介绍了一下已有的各种 CPU 插座和插槽,希望用户在升级的时候,注意要买自己的主板能支持的 CPU。
CPU的几个主要参数:主频 前端总线 倍频(这个是不能调的 厂家设定好的) 外频
关键是看一下主频还有前端总线,再就是倍频,外频这类的
不过散热方面的问题也是很重要的。也可以想想超频哦。
装好了测试,这就是看CPU的好坏