一阶线性微分方程的通解公式

2025-01-01 16:25:42
推荐回答(4个)
回答1:

这是一阶线性非齐次微分方程,有三种方法:最简单的是公式法,先化成y'-[1/(x-2)]y=2(x-2)^2,通解y=e^(-∫-1/(x-2)dx)*(C+∫2(x-2)^2*(e^∫-1/(x-2)dx)dx),常数变易法什么的还是看书吧,我这手机打着太费劲,乱糟糟的你也累,常数变易法就是先作对应的齐次方程的通解,再把任意常数C换成函数C(x),积分因子法就是方程两边都乘以同一因子,是方程变成如uy'+u'y的形式,从而化成[uy]'去掉y'项便于积分,把书上这一章最前面最基本的吃透了比什么都好使!相信我。

回答2:

解:∵(x-2)*dy/dx=y+2*(x-2)³
==>(x-2)dy=[y+2*(x-2)³]dx
==>(x-2)dy-ydx=2*(x-2)³dx
==>[(x-2)dy-ydx]/(x-2)²=2*(x-2)dx
==>d[y/(x-2)]=d[(x-2)²]
==>y/(x-2)=(x-2)²+C (C是积分常数)
==>y=(x-2)³+C(x-2)
∴原方程的通解是y=(x-2)³+C(x-2) (C是积分常数)。

回答3:

[高数]变限积分求导易错点

回答4:

先化简成标准式如下:
dy/dx+[-1/(x-2)]*y=2*(x-2)^2
因此有:
P(x)=[-1/(x-2)]
Q(x)=2*(x-2)^2
代入一阶非齐次方程通解:
y=exp[-∫P(x)dx]*[∫exp(∫P(x)dx)Q(x)dx+C]
=exp[-∫[-1/(x-2)]dx]*[∫exp[∫[-1/(x-2)]dx]*2(x-2)^2dx+C]
=exp[ln(x-2)][∫exp[-ln(x-2)]*2(x-2)^2dx+C]
=(x-2)[∫[1/(x-2)]*2(x-2)^2dx+C]
=(x-2)[2∫(x-2)dx+C]
=(x-2)[(x-2)^2+C]
=(x-2)^3+C(x-2)
我想这个已经够详细了吧