Sn/Tn=2n/(3n+1),S(n-1) / T(n-1)=2(n-1)/(3n-2),a(n) = S(n)-S(n-1) = 2n/(3n+1) *T(n) - 2(n-1)/(3n-2) *T(n-1)b(n) = T(n)-T(n-1)2(n-1)/(3n-2) * b(n) ≤ a(n) ≤ 2n/(3n+1) * b(n)2(n-1)/(3n-2) ≤ a(n) / b(n) ≤ 2n/(3n+1) 用两面夹准则,a(n) / b(n) -> 2/3