lim(x→1) (sin(x-1))⼀(x^2+x-1)的极限值,计算步骤

2025-01-19 23:24:01
推荐回答(3个)
回答1:

lim(x→1) (sin(x-1))=0
lim(x→1) (x^2+x-1)=1
所以
lim(x→1) (sin(x-1))/(x^2+x-1)=0

回答2:

lim(x→1) (sin(x-1))/(x^2+x-1)
=【lim(x→1) (sin(x-1)】/【lim(x→1)(x^2+x-1)】
=sin0/1 =0

回答3:

原式=f(1+-0)=cos(x-1)/(2x+1)=1/3