已知x눀-2=0,求代数式[(x-1)눀]⼀(x눀-1)+(x눀)⼀(x+1)的值.

已知x눀-2=0,求代数式[(x-1)눀]/(x눀-1)+(x눀)/(x+1)的值.
2025-04-01 23:57:27
推荐回答(5个)
回答1:

x^2-2=0,
x^2=2
原式=(x^2+1-2x)/x^2-1+x^2/x+1
把x^2=2代入,得
(1-2x)/2+1/x+1
将式子通分,得
((1-2x)(x+1)+2)/2(x+1)
化简后将x^2=2代入,化简,得
-(x+1)/2(x+1)
= -1/2

回答2:

[(x-1)²]/(x²-1)+(x²)/(x+1)
= [(x-1)²]/(x²-1)+(x²)(x-1)/[(x+1)(x-1)]
= (x² - 2x + 1 + x³ - x²)/ (x²-1)
= [x(x²-2) + 1]/(x²-2 + 1)
= (x*0 + 1)/(0 + 1)
= 1

回答3:

由已知得:x²=2
[(x-1)²]/(x²-1)+(x²)/(x+1)
=[(x-1)²]/(x+1)(x-1)+x²/(x+1)
=[(x-1)+x²]/(x+1)
=(x+1)/(x+1)
=1

回答4:

x^2-2=0 ->x^2=2
->(x-1)^2/(x^2-1)+x^2/(x+1)=(x-1)^2+2*(x-1)/[(x+1)*(x-1)]=(x-1)^2+2x-2=x-2x+1+2x-2=1

回答5:

题目有误?