x+1/x=3
平方
x²+2+1/x²=9
x²+1/x²=7
x³+1/x³
=(x+1/x)(x²-1+1/x²)
=3×(7-1)
=18
即(x^6+1)/x³=18
所以x³/(x^6+1)=1/18
已知x+1/x=3,求x^3/(x^3+x^6+1)是吗?
如果是这样的题目:
x+1/x=3
(x+1/x)^2=x^2+1/x^2+x+2=3^2=9
x^2+1/x^2=7
(x^2+1/x^2)*(x+1/x)=x^3+1/x^3+x+1/x=7*3=21
x^3+1/x^3=21-3=18
x^3/(x^3+x^6+1)………………………………分子分母同除以x^3
=1/(1+x^3+1/x^3)
=1/(1+18)
=1/19