1)
m//n,则 (2b-√3c)cosA=√3acosC
2bcosA=√3(acosC+ccosA)=√3b
cosA=√3/2
A=π/6
2)
2(cosA)^2+sin(A-2B)
=3/2+sin(π/6-2B)
=3/2+sin(2B+5π/6)
因为 0所以 5π/6<=2B+5π/6<=15π/6
因此,-1<=sin(2B+5π/6)<=1
所求最小值为 3/2-1=1/2。 (B=π/3)
(1) m/n,则 (2b-√3c)cosA=√3acosC
2bcosA=√3(acosC+ccosA)=√3b
cosA=√3/2
A=π/6
2)
2(cosA)^2+sin(A-2B)
=3/2+sin(π/6-2B)
=3/2+sin(2B+5π/6)