a+b=1,则a²+b²+2ab=1,
又有a²+b²=2,
于是2ab=-1,ab=-1/2
a³+b³=(a+b)³-3ab(a+b)=1+3/2=5/2
a^5+b^5
=(a+b)^5-5ab(a³+b³)-10a²b²(a+b)
=1+25/4-10/4=19/4
已知:a+b=1,a²+b²=2;求a^5+b^5
解:用二项式定理,展开(a+b)^5得:
(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5
则a^5+b^5=(a+b)^5-(5a^4b+10a^3b^2+10a^2b^3+5ab^4)
=(a+b)^5-5ab[(a^3+b^3)+2ab(a+b)]
而a^3+b^3=(a+b)(a^2-ab+b^2),则
上式=(a+b)^5-5ab[(a+b)(a^2-ab+b^2)+2ab(a+b)]
=(a+b)^5-5ab(a+b)(a^2+ab+b^2)
=(a+b)^5-5ab(a+b)[(a+b)^2-ab]
而a+b=1、a^2+b^2=2,(a+b)^2=a^2+b^2+2ab,
则ab=[(a+b)^2-(a^2+b^2)]/2=[1^2-2]/2=-1/2,
则a^5+b^5=(a+b)^5-5ab(a+b)[(a+b)^2-ab]
=1^5-5ab(1^2-ab)
=1^5-5×(-1/2)[1^2-(-1/2)]
=19/4
a+b=1,则a²+b²+2ab=1,ab=-1/2
a³+b³=(a+b)³-3ab(a+b)=1+3/2=5/2
a^5+b^5=(a+b)^5-5ab(a³+b³)-10a²b²(a+b)