A(n+1)-1=[2/(An+1)]-1
A(n+1)-1=[1-An]/(An+1) 取倒数,得:
1/[A(n+1)-1]=[-(An+1)]/[An-1]=-1-2/[An+1]
设:bn=1/[An+1],则:
b(n+1)=-1-2bn
b(n+1)+(1/3)=-2bn-2/3=-2[bn+(1/3)]
[b(n+1)+(1/3)]/[bn+(1/3)]=-2=常数,即:数列{bn+(1/3)}是以b1+1/3=1/[A1+1]+1/3=2/3为首项、以q=-2为公比的等比数列,则可以求出bn+(1/3)=(-2/3)×(-2)^(n-1),即:
1/[An+1]+(1/3)=(-2/3)×(-2)^(n-1)
……………………
设bn=(an+2)/(an-1) 则b(n+1)=(-2)bn b1=4 所以bn=(-2)^(n+1)
所以an=(bn+2)/(bn-1)=1+3/((-2)^(n+1)-1)
二楼的思路很适合这类题