高等数学问题求解

2024-11-12 19:20:45
推荐回答(4个)
回答1:

物体的质量是一三重积分,被积函数是x^2+y^2+z^2。用球面坐标系,化成∫(0到2π)dθ ∫(0到π/4)dφ∫(0到2acosφ) r^4sinφdr=64πa^5/5×∫(0到π/4) (cosφ)^5 sinφ dφ=28πa^5/15

回答2:

被积函数是x^2+y^2+z^2。用球面坐标系,化成∫(0到2π)dθ ∫(0到π/4)dφ∫(0到2acosφ) r^4sinφdr=64πa^5/5×∫(0到π/4) (cosφ)^5 sinφ dφ=28πa^5/15
本来想上传图片的,可惜没成功。

回答3:

I disagree the interval of θ. it might be better (-π/2,π/2)

triple integral
spherical coordinates
∫(-π/2-π/2)dθ ∫(0-π/4)dφ∫(0-2acosφ) r^4sinφdr=14πa^5/15

回答4:

m=∫∫∫p*dv 其中p=x^2+y^2+z^2由图得出积分区域,此题应用极坐标,x=rsinφcosθ ,y=rsinφsinθ,z=rcosφ dv=r^2sinφdrdφdθ积分区域分别为[0,π][0,2a][0,2π],