解:延长AF、AG交BC于H、IBF平分∠ABC,AH⊥BD∴△ABH为等腰△∴AB=BH,AF=FH同理AC=CI,AG=GI在△AIH中∵AF=FH,AG=GI∴GF平行且等于IH/2而IH=BH+CI-BC=AB+AC-BC=b+c-a∴FG=(b+c-a)/2
延长AG交BC于N.△ABG≌△NBG∴BN=AC,AG=GN∴NC=a-c同理可得:MB=a-b,AF=FM∴FG=1/2MN=1/2∴FG=(1/2)MN)=1/2(b+c-a)