解:己知:tan=-3
4sin²α-3sin²acos²α
=4sin²α-3sin²α(1-sin²α)
=4sin²α-3sin²α+3(sinα)^4
=sin²α+3(sinα)^4
=sin²α(1+3sin²α)
=1/cec²α(1+3/cec²α)
=1/(1+ctan²α)[(1+3/(1+ctan²α)]
=1/[1+1/tan²α)][1+3/(1+1/tan²α]
=1/[1+1/(-3)²][1+3/(1+1/(-3)²)]
=1/[1+1/9][1+3/(1+1/9)]
=1/[10/9][1+3/(10/9)]
=9/10X[1+3X9/10]
=9/10X[1+27/10]
=9/10+243/100
=90/100+243/100
=333/100
=3.33
已知tanα=-3,求4sin²α-3sin²αcos²α的值?sin²α+cos²α=1
sinα=-3cosα
所以sin²α=9/10,cos²α=1/10
4sin²α-3sin²αcos²α
=4×9/10-3×9/10×1/10
=36/10-27/100
=333/100
=3.33