去耦电容的配置
去耦电容不是一般称的滤波电容,滤波电容指电源系统用的,去藕电容则是分布在器件附近或子电路处主要用于对付器件自身或外源性噪声的特殊滤波电容,故有特称——去耦电容,去耦指“去除(噪声)耦合”之意.
1、去耦电容的一般配置原则
● 电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好.
● 为每个集成电路芯片配置一个0.01uF的陶瓷电容器.如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下).
● 对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容.
● 去耦电容的引线不能过长,特别是高频旁路电容不能带引线.
● 在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须RC 电路来吸收放电电流.一般 R 取 1 ~ 2K,C取2.2 ~ 47UF.
● CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源.
● 设计时应确定使用高频低频中频三种去耦电容,中频与低频去耦电容可根据器件与PCB功耗决定,可分别选47-1000uF和470-3300uF;高频电容计算为: C=P/V*V*F.
● 每个集成电路一个去耦电容.每个电解电容边上都要加一个小的高频旁路电容.
● 用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容.使用管状电时,外壳要接地.
由于大部分能量的交换也是主要集中于器件的电源和地引脚,而这些引脚又是独立的直接和地电平面相连接的.这样,电压的波动实际上主要是由于电流的不合理分布引起.但电流的分布不合理主要是由于大量的过孔和隔离带造成的.这种情况下的电压波动将主要传输和影响到器件的电源和地线引脚上.
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容.这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射.
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好.这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小.
2、配置电容的经验值
好的高频去耦电容可以去除高到1GHZ的高频成份.陶瓷片电容或多层陶瓷电容的高频特性较好.设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容.
去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声.
数字电路中典型的去耦电容为0.1uF的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对 40MHz以上的噪声几乎不起作用.
1uF,10uF电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些.在电源进入印刷板的地方放一个1uF或10uF的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容.
每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uF.最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容.去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uF.
由于不论使用怎样的电源分配方案,整个系统会产生足够导致问题发生的噪声,额外的过滤措施是必需的.这一任务由旁路电容完成.一般来说,一个1uF- 10uF的电容将被放在系统的电源接入端,板上每个设备的电源脚与地线脚之间应放置一个0.01uF-0.1uF的电容.旁路电容就是过滤器.放在电源接入端的大电容(约 10uF)用来过滤板子产生的低频(比如60Hz线路频率).板上工作中的设备产生的噪声会产生从100MHz到更高频率间的合共振 (harmonics).每个芯片间都要放置旁路电容,这些电容比较小,大约0.1uF左右.
电磁干扰抑制铁氧体磁环、磁珠等由于使用方便、价格低廉而倍受设计人员的青睐,它的主要优点如下:
1)使用非常方便,直接套在需要滤波的电缆上即可。
2)不像其它滤波方式那样需要接地,因此对结构设计、线路板设计没有特殊的要求。
3)作为共模扼流圈使用时,不会造成信号失真,这对于传输高频信号的导线而言非常可贵。
电磁干扰抑制铁氧体与普通铁氧体的最大区别在于它具有很大的损耗,用这种铁氧体做磁芯制作的电感,其特性更接近电阻。它是一个电阻值随着频率增加而增加的电阻,当高频信号通过铁氧体时,电磁能量以热的形式耗散掉。
要充分发挥铁氧体的性能,下面一些注意事项十分重要:
A)铁氧体磁环(磁珠)的效果与电路阻抗有关:电路的阻抗越低,则铁氧体磁环(磁珠)的滤波效果越好。因此,在一般铁氧体材料的产品手册中,并不给出铁氧体材料的插入损耗,而是给出铁氧体材料的阻抗,铁氧体材料的阻抗越大,滤波效果也越好。
B)电流的影响: 当穿过铁氧体的导线中流过较大的电流时,滤波器的低频插入损耗会变小,高频插入损耗变化不大。要避免这种情况发生,在电源线上使用时,可以将电源线与电源回流线同时穿过铁氧体。
C)铁氧体材料的选择:根据要抑制干扰的频率不同,选择不同磁导率的铁氧体材料。铁氧体材料的磁导率越高,低频的阻抗越大,高频的阻抗越小。
D)铁氧体磁环尺寸的确定:磁环的内外径差越大,轴向越长,阻抗越大。但内径一定要包紧导线。因此,要获得大的衰减,在铁氧体磁环内径包紧导线的前提下,尽量使用体积较大的磁环。
E)共模扼流圈的匝数:增加穿过磁环的匝数可以增加低频的阻抗,但是由于寄生电容增加,高频的阻抗会减小。盲目增加匝数来增加衰减量是一个常见的错误。当需要抑制的干扰频带较宽时,可在两个磁环上绕不同的匝数。
F)电缆上铁氧体磁环的个数:增加电缆上铁氧体磁环的个数,可以增加低频的阻抗,但高频的阻抗会减小。这是因为寄生电容增加的缘故。
G)铁氧体磁环的安装位置:一般尽量靠近干扰源。对于屏蔽机箱上的电缆,磁环尽量靠近机箱电缆的进出口。
H)与电容式滤波连接器一起使用效果更好:由于铁氧体磁环的效果取决于电路的阻抗,电路的阻抗越低,则磁环的效果越明显。因此当原来的电缆两端安装了电容式滤波连接器时,其阻抗很低,磁环的效果更明显。
铁氧体磁芯的线圈在频率较低时,仍然是一个电感, 对于这种单个电感构成的滤波电路而言,截止频率为:Fco=1/(2πRsL), Rs 是原电路阻抗与负载电路阻抗的串联值。
去耦电容的配置
去耦电容不是一般称的滤波电容,滤波电容指电源系统用的,去藕电容则是分布在器件附近或子电路处主要用于对付器件自身或外源性噪声的特殊滤波电容,故有特称——去耦电容,去耦指“去除(噪声)耦合”之意.
1、去耦电容的一般配置原则
电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好.
为每个集成电路芯片配置一个0.01uF的陶瓷电容器.如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下).
对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容.
去耦电容的引线不能过长,特别是高频旁路电容不能带引线.
在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须RC 电路来吸收放电电流.一般 R 取 1 ~ 2K,C取2.2 ~ 47UF.
CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源.
设计时应确定使用高频低频中频三种去耦电容,中频与低频去耦电容可根据器件与PCB功耗决定,可分别选47-1000uF和470-3300uF;高频电容计算为: C=P/V*V*F.
每个集成电路一个去耦电容.每个电解电容边上都要加一个小的高频旁路电容.
用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容.使用管状电时,外壳要接地.
C deltaU=I deltat
deltaU是电路电源允许的降低,deltat是这个需求维持的时间,I是芯片最大需求电流。
但一般没必要这么精细。举例来说0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于 10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。故根据这个大概的估算是。一般可按C=1/F,即10MHz取0.1μF,100MHz取 0.01μF。
友情提醒一下:去耦电容要使用钽电容或聚碳酸酯电容,尽量不要用电解电容,因为电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感
根据电路的频率