xy’+y=0的通解是

2025-01-21 06:31:40
推荐回答(1个)
回答1:

∵xy"+y'=0 ==>xdy'/dx+y'=0
==>dy'/y'=-dx/x
==>ln│y'│=-ln│x│+ln│C1│ (C1是积分常数)
==>y'=C1/x
∴y=∫C1/xdx
=C1ln│x│+C2 (C2是积分常数)
故原微分方程的通解是y=C1ln│x│+C2 (C1,C2是积分常数).