高斯怎样发明高斯定理?

2024-11-08 16:45:09
推荐回答(5个)
回答1:

高斯定理是高斯从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律,把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。

高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。

扩展资料:

在静电学中,表明轮罩谈在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。
                                                                   

高斯定律(Gauss'
law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代腊碰数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况闷运下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

参考资料:

百度百科-高斯定理

回答2:

高斯7岁那年开始上学,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错卜凳了,回去再算算。”高斯非常坚定,说出答案就是5050。高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。布特纳对他刮目相看。因为是他发明的这个定律,因此就叫“高斯定理”

扩展资料:

高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。

在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯棚弊哗定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场链行之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

参考资料:百度百科-高斯

回答3:

1785年,8岁的高斯在德国农村的一所小学里念一年级。 数学他出了一道算术题。他说:“你们算一算,1加2加3,一直加到100等于多少?” 说完,他就坐在椅子上,用目光巡视着趴在桌上演算的学生。 不到一分钟的工夫,高斯站了起来,手里举着小石板,说:“老师,我算出来了......” 没等小高斯说完,老师就不耐烦的说:“不对!重新再算!” 高斯很快的检查了一遍,高声说:“老师,没错!”说着走下座位,把小石板伸到老师面前。 

老师低头一看,只见上面端端正正的写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的数学题,一个8岁的孩子,用不到一分钟的时间就算出了正确的得数。要知道,他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。

就问小高斯:“你是怎么算的?”小高斯回答说:“我不是按照1、2、3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101,2加99时101,3加98也是101......一前一后的数相加,一共有50个101,101乘50,得到5050。”

高斯的回答使老师感到吃惊。因为他还是第一次知道有这种算法。不久,老师专门买了一本数学书送给小高斯,鼓励他继续努力,还把小高斯推荐给当地教育局,使他得到免费教育的待遇。后来,小高斯成了世界著名的数学家。 人们为了纪念他,把他的这种计算方法称为“高斯定理”。

扩展资料

高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。

在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

物理应用

矢量分析

高斯定理是矢量分析的重要定理之一。它可以被表述为: 

这式子与坐标系的选取无关。

式中

称向量场

 

的散度(divergence)。

静电学

定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比: 

换一种说法:电场强度在一键森封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。

(当所涉体积内电荷连续分布时,上式右端的求和应变为积分。)

它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

高斯定理反映了静电场是有源场这一特性。睁亮念

高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。

当空间中存在电介质时,上式亦可以记作悉困 

式中  为曲面内自由电荷总量。

它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和

 ,与自由电荷的分布情况无关,与极化电荷亦无关。电位移对任一面积的能量为电通量,因而电位移亦称电通密度。对于各向同性的线性的电介质,如果整个封闭曲面S在一均匀的相对介电常数为

 的线性介质中,则电位移与电场强度成正比,

 ,式中  称为介质的相对介电常数,这是一个无量纲的量。

更常遇到的是逆反问题。给定区域中电荷分布,所求量为在某位置的电场。这问题比较难解析。虽然知道穿过某一个闭合曲面的电通量,但这信息还不足以确定曲面上各点处的电场分布,在闭合曲面任意位置的电场可能会很复杂。仅有在体系具有较强对称性的情况下,如均匀带电球的电场、无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,使用高斯定理才会比使用叠加原理更简便 

磁场

磁场的高斯定理指出,无论对于稳恒磁场还是时变磁场,总有: 

由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。

参考资料:百度百科 高斯定理

回答4:

1、高斯7岁那年开始上学,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯非常坚定,说出答案就是5050。高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。布特纳对他刮目相看。因为是他发明的这个定律,因此就叫“高斯定理”

2、高斯定理也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。

3、高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。

4、高斯和阿基米德、牛闷脊顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

扩展资料:

1、高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。

2、高斯对代数学的重要贡献是证明了代数基本定理,他的存搏罩困在性证明开创了数学研究的新途径。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西基念积分定理。

3、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。

参考资料:百度百科-高斯

回答5:

在高等数学里,是高斯公式,反应三重积分和闭合曲面积分的关系。在物知春理学中,是高斯定理,反应电荷与电慧猛枣场的前拆关系。