概率论与数理统计的填空题:

2025-01-20 22:05:23
推荐回答(2个)
回答1:

1.掷三次,至少出现一个正面
2.1/2*c+5/4*c+3/12*c=1,即c=1/2
3.P(X=0)=λ^0/0!*e^(-λ)=e^(-λ)=e^(-1)
λ=1
则P(X=k)=1/k!*e^(-1)
4.E(aX+b)=aE(X)+b=aμ+b
D(aX+b)=a^2*D(X)=(aσ)^2
故aX+b服从正态分布N(aμ+b,(aσ)^2)
5.方差σ2的无偏估计为
S^2=1/(n-1)∑[1,n](Xi-X*)^2
(X*为样本均值)

回答2:

1、掷三次硬币,至少有一次正面朝上
2、c=2;三个数相加和为1,然后通分计算即可