1. 方程xy=e^(x+y)确定的隐函数y的导数:y'=[e^(x+y)-y]/[x-e^(x+y)]解题过程:方程两边求导: y+xy'=e^(x+y)(1+y')y+xy'=e^(x+y)+y'e^(x+y) y'[x-e^(x+y)]=e^(x+y)-y 得出最终结果为:y'=[e^(x+y)-y]/[x-e^(x+y)]