洛必达法则求极限:x趋向于0, lim(sin x⼀x)的1⼀x눀次幂

最好是图,谢谢
2024-11-08 16:36:46
推荐回答(1个)
回答1:

J(x) = [(sinx)/x]^(1/x^2)
lim(x->0) lnJ(x) = lim(x->0) ln[(sinx)/x] / x^2
= lim(x->0)(xcosx - sinx)/(2x^2sinx)
= lim(x->0) (cosx-xsinx-cosx) / 2(2xsinx+x^2cosx)
= 0.5 lim(x->0) -sinx / (2sinx+xcosx)
= -0.5 lim(x->0) cosx /(2cosx+cosx-xsinx)
= -0.5 (1/3)
= - 1/6 //: lnJ=-1/6
因此:lim(x->) [(sinx)/x]^(1/x^2) = e^(-1/6)