n=1,1=1,不等式成立,设n=k时1+1/2+1/3+....+1/2的k次方-1≤k则n=k+1时左边=[1+1/2+1/3+....+1/2的k次方-1]+[1/(2^(k-1)+1)+1/(2^(k-1)+2)+1/(2^k)]右边=k+1根据假设1+1/2+1/3+....+1/2的k次方-1 ≤k1/(2^(k-1)+1)+1/(2^(k-1)+2)+1/(2^k)≤2^(k-1)*[1/(2^(k-1))]=1所以左边≤k+1.成立综上,不等式对一切自然数成立