金属注射成形介绍
评论:0 浏览:2111 发布时间:2006-7-14
金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制品,但塑料制品强度不高,为了改善其性能,可以在塑料中添加金属或陶瓷粉末以得到强度较高、耐磨性好的制品。近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成{TodayHot}品。
1.MIM粉末及制粉技术
MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等,表1中列出了最适合于MIM用的原料粉末的性质。
由于MIM原料粉末要求很细,MIM原料粉末价格一般较高,有的甚至达到传统PM粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等。
1.1羰基法
MIM最早使用的粉末是羰基法生产的,美国GAF化学公司采用较粗的海绵铁粉作原料,制粒后在350度氢气中退火活化,然后置于反应器中,铁粒暴露在循环的CO中,气体压力为6OPMa,温度160度,铁与CO发生反应,得到气态的Fe(CO)5,并加以冷凝收集,接下来,使Fe(CO)5蒸发通过一个垂直的反应塔,反应塔加热到300度,在催化剂NH3作用下,Fe(CO)5在塔顶部分解为Fe和CO气体,将沉积的铁粉聚集体球磨,得到符合要求的成品铁粉,粉中一般含0.8%C,0.7%N和0.3{HotTag}%O(质量分数)。
羰基法是一种较为成熟的制备MIM用粉末的方法,所制得的粉末呈秋形,粒度小,但是羰基法只能生产有限的几种粉末(如铁粉、镍粉),不易生产包含2种以上元素的合金粉,而且羰基法生产过程毒性大,在MIM生产过程中还存在碳含量控制的问题。
1.2超高压水雾化法日本的PAMCO,Kawasaki Steel,Kawasaki Steel几家公司发展了一种超高压水雾化,该法能够较为经济地大量生产MIM用金属和合金粉末。其中以PAMCO公司产量最大,工艺也最有代表性。该公司年产MIM用粉末300t采用150MPa高压水雾化,其主要产品为各种不锈钢粉和低合金钢粉,PAMCO从20世纪80年代中期开始商业生产MIM粉,针对水雾化粉摇实密度低,导致注射成形时填充密度低而需要较多的粘结剂的缺点,在增加粉末的球化率,提高其摇实密度方面作了许多改进,改进后的PAMCO新型MIM粉的摇实密度比常规MIM水雾化粉的摇实密度提高了10%,采用具有较高摇实密度的粉末,PAMCO已经成功地将所需粘结剂减少了20%左右。
1.3采用改进型喷嘴的高压气体雾化法
气体雾化法生产的粉末摇实密度高,流动性好,所需添加剂量少,且用惰性气体,所得粉末的残留气体含量比水雾化粉至少低一个数量级,但是一般气体雾化粉颗粒较粗,约为40-50um,能适应MIM要求的细粉量很少,英国Osprey公司和PSI公司为此对喷嘴进行改进,采用高压气体雾化,使得适合MIM用的细粉产出率大大提高。Osprey公司用高压氩气和氮气(压力为5PMa)生产的不锈钢粉末中有75%的粉末粒度小于20um,大大高于常规气雾化法的20%,其平均粒度为14um,该公司还用该法生产了高速钢粉、工具钢粉以及磁性合金粉等。据Osprey公司称,这种高压气雾化MIM粉价格主要取决于生产规模大小,在大规模生产的情况下,该法生产的粉末价格甚至可以与高压水雾化法抗衡。
1.4微雾化法美国Micro Materials Technology和GTE Products公司报道了他们采用微雾化法制备MIM用细粉的情况。据称,该法是一种有效制备小于20um粉末的生产方法,其原理是基于金属液滴撞击不浸润的基片而发生破碎。原料为普通雾化法生产的较粗粉末(50-150um),利用等离子喷枪熔化原料粉末并加速熔融金属液滴,被加速的金属液滴撞击不浸润的旋转基盘而产生破碎,破碎的细小液滴球化,并迅速冷却成细小粉末。
微雾化法是一种将较粗粉末有效地处理成细粉的新工艺,有以下优点:无容器熔化而大大减少了粉末污染;由于高的等离子气体的温度,没有熔点限制,可以方便地制造各种难熔金属和合金粉末;不需要常规的庞大的炉子装置,节约能源。另外,美国Ultra Fine Powder Technology公司开发了一种Tandem雾化装置,它的基本原理是在雾化之前,将一定压力的气体注入金属熔体中,这样,雾化后每一金属液滴内都包含有气体。在冷却过程中,液滴内部气体压力增大,金属液滴产生破碎而得到超细球形粉末。
1.5Nanoval层流雾化法德国 Nanoval公司开发出了一种独特的气雾化技术,基本思路是应用自稳定的、严格成层状的气流,使熔化的金属平行流动。熔化了的金属从拉瓦尔喷嘴的入口到最窄处被气体压缩而迅速加速(从几m/s到音速),气体为获得稳定而呈层状流动。在最窄处以下,气体被快速压缩,加速至超音速,在气液流界面由于剪切应力,金属熔体丝以更高的速度变形,最终不稳定而破裂成许多更细的丝,最终凝结成细小粉末。
该技术可直接生产许多适合于MIM的贵金属粉、特殊牌号的不锈钢和高速钢粉、铜基合金和超合金粉等,该公司产品粉末粒度约为10um,其中20um粒度以下的粉末约占90%。
2粘结剂
粘结剂是MIM技术的核心,在MIM中粘结剂具有增强流动性以适合注射成菜和维持坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘结剂,近年来正逐渐从单凭经验选择向根据对脱脂方法及对粘结剂功能的要求,有针对性地设计粘结剂体系的方向发展。
粘结剂一般是由低分子组元与高分子组元加上一些必要的添加剂构成。低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成形坯强度。二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。通常采用的粘结剂主要有:热塑性体系(石蜡基、油基和热塑性聚合物基)、凝胶体系、热固性体系和水溶性体系。
2.1 热塑性体系
石蜡基粘结剂是最早使用,而且至今仍有竞争力的粘结剂休系,特别是壁厚小于3mm的零件,主要由石蜡与聚烯烃组成。如HDPE,LDPE,PP,PS,EVA,PEEA,POM/PE等。石蜡中PW,PEW无极性,而CW,BW有弱极性,相互配合可改善粘结剂与粉末的粘合程度。石蜡高温粘度低,与塑料相容性好,粉末装载量高,但石蜡体系冷却时收缩大,内应力大,脱脂慢。
油基粘结剂主要利用油在室温下为液态或半固态,与石蜡基粘结剂相比,改善了内诮力,另外采用溶剂脱脂速度快。加然German认为若采用溶剂脱脂,应采用氢化植物油或椰子油,然而许多文献报道可用其它多种油,如日本用花生油、Sasamw油与PE,PP配成粘结剂,美国用Hunt Weseen油与PE构成粘结束剂,石脑油可与PMMA配合。使用油基粘结剂的难点在于增加油含量的同时要保持生坯强度,防止两相分离的产生,以及快速溶剂脱脂时解决溶胀和应力开裂的问题。AMAX Injection Molding公司的专利技术对这些问题解决得较好。
一般来说,热塑性聚合物基粘结剂由于使用较多聚合物,成形坯强度高,但较多的聚合物会导致脱脂慢、装载量低。这一类体系也有报道,如67%PP、22%微晶蜡、1%SA,以及72%PS,15%PP,10%PE,3%SA。最成功地应用于大规模工业生产的是20世纪90年代德国BASF公司开发的粘结剂。他们采用独特的方法解决了这类体系的不足,该粘结剂90%以上为改性聚醛树脂加上少量添加剂以利于高温保形和降低粘度,不仅粉末装载量高,而且喂料粘度与石蜡基在同一数量级,可适合很广泛的粉末种类。公司已制成Fe,Fe/Ni,100Cr6,Fe/Co,WC/Co,Cu合金,YBa2Cu3O7等多种喂料出售。
2.2 凝胶体系
1978年美国的R.D.Rivers发明了凝胶体系,由甲基纤维素、少量水、甘油和硼酸组成。甲基纤维素与水在受热时形成凝胶以提高生坯强度,特点是使用有机物少,脱脂快。不足之处是生坏强度低,脱模困难,不能连续生产,类似的体系还有琼脂与水。1994年法国Impac和Metals Process System公司宣称开发了Quickset无粘结剂工艺,只需传统MIM粘结剂含量的5%,实际上也是用极少量的有机物加液体载体以形成特殊的结构来获得生坯强度。据称该粘结剂体系已可用来生产厚至20mm,重达800g的零件。目前日本PAMCO公司正和MPS公司联合研究,进一步开发这一技术。
2.3 热固性体系
Brasel通过对多种热固性树脂的选择,确定了呋喃族树脂可用于MIM,Petzoldt应用端羰基的聚酰胺树脂,以多字能团环氧树脂为硬化交联剂,在150-250℃时发生交朕,交朕温度高于注射和混炼温度。热固性粘结剂有些缺陷是难以解决的,如脱脂时不产生小分子,有残留,废次品不能重复使用等,因此限制了它在实际工业中的应用。
2.4 水溶性体系
水溶性粘结剂是20世纪90年代开发出的一类很有前途的体系,是从“固态聚合物溶液”(SPS)体系中发展起来的,用水溶性聚乙二醇(PEG)作主要成分,加部分PMMA或苯氧树脂作粘结剂,在脱氧蒸馏水中浸泡脱脂,但这种体系存在混合时间长、脱脂慢、溶胀等缺陷。后来Amwar作了改进,采用悬浮聚合得到的超高分子量的PMMA(分子量-106),配合以特定的混合方式,解决了变形问题,使水脱脂温度可以从室温升至60-80℃,脱脂时间从16h降至3h,而且制备出了较高尺寸精度的产品。Hens等另辟蹊径,用PEG与可交联的聚合物PVB于脱脂前或部分脱脂后用紫外光固化,也控制了脱脂变形。Bialo发展了另一类水溶性体系,以聚氧化乙烯(PEO)为水溶性部分,成形坏只需在水中浸泡60-70min就可脱除PEO。
水溶性体系由于采用水脱脂,价格便宜,无毒,有利于环保,然而粘结剂存在吸水问题,混合较难,产品尺寸精度还不高。所以,虽然该体系已问世五年,但到目前为止,仍处于实验室阶段,但该体系无疑极具潜力,是发展方向。
此外还有些新型粘结剂体系,工艺上各有特点。如美国专利提出的聚酰胺基粘结剂;日本专利报道的丙烯酸系粘结剂,特点是易除去,无副县长产物;含烷基的硅酸盐无机物粘结剂,其注射压力小于有机物粘结剂体系。此外还有自行合成的非晶态聚合物粘结剂,特点是可用混合溶剂解等。
3 混炼
混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。这牵涉到粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。这一工艺步骤目前一直停留在依靠经验摸索的水平上,最终评价混炼工艺好坏的一个重要指标就是所得到喂料的均匀和一致性。
MIM喂料的混合是在热效应和剪切力的联合作用下完成的。混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,至于剪切力的大小则依混料方式的不同而变化。MIM常用的混料装置有双螺旋挤出机、Z形叶轮混料机、单螺旋挤出机、柱塞式挤出机、双行星混炼机、双凸轮混料机等,这些混料装置都适合于制备粘度在1-1000Pa•s范围内的混合料。
混炼的方法一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。这样能防止低熔点组元的气化或分解,分批加入金属粉可防止降温太快而导致的扭矩急增,减少设备损失。
对于不同粒度粉末搭配时的加料方式,日本专利介绍:先将较粗的15-40um水雾化粉加入粘结剂中,然后加入5-15um粉,最后加入粉度≤5um粉,这样得到的最终产品的收缩变化很少。为了在粉末周围均匀涂覆一层粘结剂,还可将金属粉末直接加入到高熔点组元中,再加入低熔点组分,最后去除空气即可。如Anwar将PMMA悬浮液直接加入到不锈钢粉中混合,然后将PEG水溶液加进去,干燥,然后边搅边除去空气。O'connor采用溶剂混合,先将SA与粉干混再加入四氢呋喃溶剂,然后加入聚合物,四氢呋喃在受热中逸去后,再加入粉末混合,可得到均匀的喂料。
4 注射成形
注射成形的目的是获得所需形状的无缺陷、颗粒均匀排由的MIM成形坯体。如图1所示,首先将粒状喂料加热至一定高的温度使之具有流动性,然后将其注入模腔中冷却下来得到所需形状的具有一定刚性的坯体,然后将其从模具中取出得到MIM成形坯。这个过程同传统塑料注射成形过程一致,但由于MIM喂料高的粉末含量,使得其注射成形过程在工艺参数上及其它一些方面存在很大差别,控制不当则易产生各种缺陷。
MIM产品可能的缺陷大部分是在注射成形步骤中形成,如裂纹、孔隙、焊缝、分层、粉末与粘结剂分离现象等。但这些缺陷经常是直至脱脂和烧结后由于注射时产生的应力被释放后才能发现,因此,注射成形工艺的控制对提高产品成品率和材料利用率非常关键。
注射成形时缺陷控制问题基本可以分为二个方面,一是成形温度、压力、时间三者函数关系设定,另一方面则是填充时喂料在模腔中的流动就牵涉到模具设计的问题,包括在进料口的位置、流道的长短、排气孔的设置等,这些都需要对喂料流变性质、模腔内温度和残余应力分布清楚的了解。计算机模拟技术在金属粉末注射成形模具设计方面将可发挥重要的作用。
5 脱脂
从MIM技术产生以来,随着粘结剂体系的不同,形成了多种MIM工艺路径,脱脂方法也多种多样。脱脂时间由最初的几天缩短以了现在的几小时。从脱脂步骤上可以粗略地将所有的脱脂方法分为两大类:一类是二步脱脂法。二步脱脂法包括溶剂脱脂+热脱脂,虹吸脱脂——热脱脂等。一步脱脂法主要是一步热脱脂法,目前最先进的是amaetamold法。下面分别介绍几种有代表性的MIM脱脂方法。
5.1 Wiech法
Wiech法以Wiech于1980年发明的专利为代表,并经过了几次改进。可将其称为Wiech(1)、(2)和(3)法。Wiech所用的粘结剂为MIM中最常用的蜡基粘结剂体系,含一种或多种组元。Wiech(1)法的基本过程是:首先将MIM成形坯置于一直空容器内,将其加热到粘结剂的流动温度或高于这个温度,然后将溶剂以气态形式缓慢地加入成形坏所在的容器内。气态溶剂进入成形坯溶解粘结剂,溶解到一定程度,粘结剂的溶剂溶液会从成形坏中渗出。通过这种气态溶剂可以脱除大部分的粘结剂而不会产生裂纹或断裂现象。将已脱除了大部分粘结剂的成形坯再浸入液态溶剂中除去剩余的部分粘结剂。由于已经通过气态溶剂脱脂形成的孔隙能道,第二步浸入式溶剂脱脂速度很快,且不会产生裂纹和缺陷。最后将成形坯预热以除去残留的部分粘结剂和部分溶剂,并进行烧结得到成品。Wiech(1)法仅气态溶剂脱脂就需3天时间,脱脂效率很低。且由于脱脂温度高于粘结剂流动温度,变形较严重。Wiech于1981年发明了Wiech(3)法,其基本过程是:将MIM成形坯置于一惰性气体容器中,通过调节温度和气体流量,使得成形坯中粘结剂的蒸气压高于容器内气氛压力,这样粘结剂能从成形坏中蒸发出来进入容器气氛中,容器中有一个独立部分用来冷凝收集粘结剂,粘结剂脱除速度可以通过调节冷凝速度来控制。对于多组元粘结剂,还可以通过调节容器内温度和压力,有选择地逐步蒸发排除。此过程约需一天或一天以上时间。
Wiech于1981年发明了Wiech(2)法,采用虹吸脱脂作为第一步,将MIM成形坯置于虹吸料上,缓慢升温至200℃保温3h以脱除大部分粘结剂,然后再将成形坯放入炉中于一个大气压的氢气氛中以约3℃/min的速率升至约800℃进行进一步脱脂和预烧结,整个脱脂过程约10h左右。这样,Wiech实际上采用了三种形式的二步法进行脱脂,先是采用溶剂蒸气脱脂,然后是蒸发法,后来又采用虹吸脱脂作为第一步,脱脂时间也由最初的3天缩短到了10个小时。但它人都存在一些缺点,Wiech(1)法效率低,成形坯易产生变形。Wiech(2)法脱脂炉内气氛压力需精确控制,且对于销大分子量的粘结剂组元,则蒸发法很难奏效。Wiech(3)法存在虹响应料粘附于成形坯和污染成形坯的问题。
5.2 Injectamax法美国AMAX Metal Injection Molding公司的Johnson于1988年发明了Injectamax法,该方法的主要优点在于脱脂速度快且不会造成裂纹。其粘结剂由至少两种组元构成,脱脂时选用一种溶剂有选择地首先溶解脱除粘结剂中的可溶性组元,而不溶性组元则不溶解。这样打开孔隙通道,然后再利用热脱脂除去剩余的粘结剂。该法采用的粘结剂一般由植物油、石蜡和热塑性树脂构成,采用三氯乙烷溶剂首先除去油和石蜡。整个脱脂工艺过程时间短,只需6h,是一种快速的脱脂方法。这种溶剂脱脂+热脱脂两步法由于简单、投资少和高效率,是目前大多数MIM公司和生产厂家所采用的生产方法。
5.3 水溶解法
水溶解法是建立在90年代发展起来的水溶性粘结剂基础上的,它是类似于Injectamax二步法(溶剂脱脂+热脱脂)的直接发展。由于化学溶剂存在毒性、回收等问题,如果能用便宜、无污染的水作为溶剂则可将MIM工艺水平大大提高一步。Cao发展了一种固态聚合物溶液脱氧蒸馏水中浸泡约16h即可除去80%的聚乙二醇,然后再采用热脱脂法除去剩余的粘结剂。Anwar和Yang也采用聚乙二醇+聚甲基丙烯酸甲酯粘结剂体系做了一些工作,通过采用提高水温至60-80℃,可在此h除脱95%以上的聚乙二醇。Bialo发展了另一种形式的水溶性粘结剂,它采用聚氧化乙烯作为水溶性部分,其粘结剂配方为76%聚氧化乙烯+23%聚乙烯蜡——1%硬脂酸,成形坯只需在水中浸泡60-70min就脱除了大部分聚氧化乙烯。由于水价格便宜、无毒、无污染问题,水溶解法是一种经济且对环境最为有利的脱脂主法。但是水溶性粘结剂存在吸水问题,导致MIM喂料的贮存和运输需特殊装置,并且与水溶性粘结剂中的水溶性部分(如聚乙二醇)相容的聚合物很少且混炼时易发生溶胀,喂料混炼时间很长。所以虽然不溶解法问世五年,但到目前为止还处于实验室阶段,没有用于实际生产。
5.4 Metamold法Metamold法是由德国BSAF公司的Bloemacher等于90年代初开发出来的MIM一步脱脂方法,是一种催化脱脂方法。该法的主要技术特点是采用聚醛树脂作为粘结剂并在酸性气氛中快速催化脱脂。采用长链聚醛树脂作为粘结剂,利用聚醛树脂的极性连接金属粉末,可以适合于很广泛的粉末种类范围。聚醛树脂在酸性气氛催化作用下分解为甲醛,这种分解反应在110 ℃以上快速发生,是一种直接的气-固转变,有利于控制生坯变形,保证了烧结后的尺寸精度。催化脱脂在气氛-粘结剂的界面进行,在成形坯内部没有气体存在,反应界面的推进速度可达到1-4mm/h。
德国CREMER公司针对Metamold脱脂法设计了一种连续脱脂和烧结炉系统,操作过程是:将MIM成形坏放在脱脂的第一个加热区,并在氮气气氛下加热至86℃,以避免在随后的催化脱脂过程中硝酸冷凝在坯料上。然后将成形坯移动进入催化脱脂区,将聚醛树脂分解为甲醛。经过初步脱脂后,坯料通过第一个清洁室进入烧结炉,在烧结炉的第一个加热区脱除残余的粘结剂。随后,在氮气、氢气、氩气、分解氨和其它一些混合物的作用下进行烧结。
Metamold法的一个重要特点是采用催化剂脱脂,脱脂时不出现液相,避免了MIM产品容易发生变形和尺寸精度控制困难的弱点,是MIM产业的一个重大突破,并且由于是催化脱脂,大大缩短了脱脂时间,从而降低了成本。并且应用Metamold法能产生较大尺寸的MIM零部件。采用CREMER公司的连续脱脂和烧结系统,能够实现连续化生产,使得MIM真正成为一种具有竞争力的PM近净成形技术。
Metamold法是目前应用于工业生产中最先进的MIM脱脂方法。不过这种方法存在酸性气氛腐蚀设备、废气处理等问题,且设备投资成本相对其它方法更高。
6 烧结烧结是 MIM工艺中的最后一步工序,烧结消除了粉末颗粒之间的孔隙.使得MIM产品达到全致密或接近全致密化。金属注射成形技术中由于采用大量的粘结剂,所以烧结时收缩非常大,其线收缩率一般达到13%-25%,这样就存在一个变形控制和尺寸精度控制的问题。尤其是因为MIM产品大多数是复杂形状的异形件,这个问题显得越发突出,均匀的喂料对于最终烧结产品的尺寸精度和变形控制是一个关键因素。高的粉末摇实密度可以减小烧结收缩,也有利于烧结过程的进行和尺寸精度控制。对于铁基和不锈钢等制品,烧结中还有一个碳势控制问题。由于目前细粉末价格较高,研究粗粉末坯块的强化烧结技术是降低粉末注射成形生产成本的重要途径,该技术是目前金属粉末注射成形研究的一个重要研究方面。
MIM产品由于形状复杂,烧结收缩大,大部分产品烧结完成后仍需进行烧结后处理,包括整形、热处理(渗碳、渗氮、碳一氮共渗等),表面处理(精磨、离子氮化、电镀、喷丸硬化等)等。
世界塑料原料1991年突破一亿吨,1999年突破1.5亿吨,达到156717000吨。在原料大幅度增长的同时,塑料成型加工技术也取得长足进步,下面就主要的注射成型作一简介。
一、注射成型
注射成型是低成本、大批量生产塑料制品的极好的加工方法,同时,也是开发高技术商品不可或缺的加工技术。以前,注射成型加工技术常常由塑料机械厂商和树脂厂商提出,而现在必须由成型厂商、最终的组装厂商、模具厂商、周边机器厂商等所有相关厂商合作,从各自的角度提出各种新技术,推动注塑技术的进步。
在新产品开发和降低成本的激烈竞争中,为提高产品的附加价值,各生产厂商必须积极开发公司自己的最佳成型方法来成型本公司的产品,力争用个性化的技术生产个性化的产品。这些正是注射成型技术和注射成型机进步的动力。
近年,开发的注射成型技术包括超高速注射技术、薄壁成型技术、气体辅助注射成型技术、多材料复合注射成型技术、嵌件注射成型技术、模内装饰技术等;注射成型机进展包括电动式注射成型机、螺杆预柱塞式注射成型机、微型注射成型机、注射压缩成型机、各种专用注射成型机、无拉杆注射成型机等。与注射成型技术相关的还有模具技术、辅助机械和周边机器技术、控制技术等也有相应的进展。模具技术典型的有热流道模具技术,辅助机械技术典型的有机械手,控制技术典型的有闭环控制技术。各种成型技术和机械互相渗透,互相促进。
二、注射成型模具
热流道模具
热流道模具也称无流道模具,是指不产生浇注系统凝料(料把)的流道系统的模具。因可以省去浇口凝料切除工序,可提高生产率,也省去了料把的回收,可节省工时和能源,因而受到用户的欢迎。
在一些加工厂,为增加生产能力常常靠通过增加设备数量来达到,而很少考虑去提高现有设备的有效时间,而热流道模具的应用正可以通过增加有效时间提高生产效率。
对于像CD—R、DVD、瓶盖和一次性调羹这样大量和简单的产品的生产,非常适合采用热流道模具。热流道能节约成本,肯德基炸鸡公司使用32腔调羹的热流道模具就是一个很好的例子。由于无需清理飞边,加快了成型周期,因采用热流道而增加的成本一个月就可收回。
设计合理的热流道模具特别适合热敏性树脂,如阻燃工程塑料,并且由于无料把,解决了料把树脂不能回收利用的问题。
发挥热流道模具效果的关键是设计好热流道:
a、喷嘴应该消除静态树脂熔体,因为静态树脂熔体会发生热降解而影响熔体质量。
b、喷嘴的设计要使塑料每次都能被完全推出,换色只要3次注射即可完成。
c、喷嘴全使用长铍-铜合金芯和标准230-V加热器,对玻璃纤维增强的材料,喷嘴内部使用导热硬质合金。
浇口通常采用通过顶部定位/锁紧螺母固定,可以更换,只要掉换浇口衬套,即可改变浇口,从而不必掉换整个喷嘴。
热流道注射成型模具近5年的价格几乎已经下降了一半。目前在全世界的热流道注射成型模具的实际使用量约占全部注射成型模具消费量的20%~30%;在美国约占40%;在德国约占30%,但是,在亚洲的用量只有10%左右,而在中国的用量更是不足5%。
三、注射成型技术
1、超高速注射成型
超高速注射成型是指树脂充模时螺杆前进速度为500~1000mm/s的注射成型技术。用于超高速充模注射成型的注射成型机称为超高速充模注射成型机,主要用于薄壁塑料制品(如IC卡等)的成型。机理是机构要保证将熔融树脂在瞬间充模注射成型技术的开发也是以塑料机械生产厂商首先开发并推动市场的。
日精超高速注射成型机
超高速充模注射成型技术的优点如下:
a、由于成型材料在极高剪切速率下流动,所以材料因为受到高剪切发热而使粘度降低,另一方面,材料与模具中流道的低温壁面接触固化时通常会形成一个皮层,在超高速充模注射成型的情况下,这一皮层的厚度通常也较薄,使充模过程中的整个材料温度能在较长时间内保持在较高温度,这也使材料的粘度保持在较低的水平,从而容易实现超薄壁成型。
b、因为是低粘度下的流动,成型制品各部分的承受的承受压力较为均匀,温度梯度较小,所以制品的翘曲、扭曲等变形较小。
c、制品表面的流纹(流痕)和熔合线比普通成型不明显。
超高速充模注射成型技术最大的目标,是超薄壁成型,而薄壁制品究竟能薄到什么程度,这是一个关键问题。注射成型机的注射速度,首先要把握的第一个关键是使用材料的成型性,也就是流动性和固化速度。另外,模具设计也是一个重要的关键,特别是如何确保排气的实现有时是决定性的因素。壁厚0.5~0.6mm的一次性使用的杯子,通过使用流动性较好的材料,如PP、PE、PS等,在几十年前就已经能进行生产了,不必特别采用超高速充模注射成型机也能进行高速成型。近年采用超高速充模注射成型技术的意义在于,将其用于流动性较差的工程塑料,制造电子机器等高功能性零部件。
另外,笔记本电脑和移动电话的外壳(壁厚0.6~1.0mm)等以薄壁化和轻量化为目的的制品,这类制品在考虑成型性、薄壁性的同时,要考虑翘曲、扭曲等变形问题。这常常要依赖CAE进行分析。
再有,超薄壁高功能性制品DVD(壁厚0.6mm)、IC卡(壁厚0.8mm)等,通常不采用上述超高速充模注射成型机,而可以采用注射压缩成型方法。
轻薄短小化是塑料制品的发展方向,对应于薄壁化、轻量化的成型方法的开发将变得越来越重要。
2、薄壁注射成型
就像移动电话或笔记本型个人计算机所代表的那样,在提高性能和小型化方面同时进行商品开发,而注射成型制品的小型化和薄壁给与很大贡献。
薄壁成型的定义还没有统一,但是,现在要求定义为0.5mm以下的平板形状,或在连接等局部地方要求在0.1mm以下的制品成型称为薄壁成型。
薄壁成型方法,可大致划分为3种类。
(1)高压高速充模成型
使用最大注射速度为600~1000mms、注射应答时间为10~50ms规格的注射成型机,在极短的时间,且直至最后用高压克服充模阻力,充满型腔的成型方法。为此,在1996年的IPF上,各公司互相展示其最大的注射速度值的注射成型机。
成型机的特点可举例如下:
a、为提高注射立即应答性能,须进行油压、电器控制技术的开发和降低注射单元的质量。
b、为了抑制充模结束时点控制的差异,制动特性和控制处理速度要求高速化。
c、耐高的注射压力,要求刚性高的模具。
d、耐高的注射压力,要求刚性高、精度高的模具。
e、为实现稳定成型条件下的均匀塑化,要使用高混炼型的螺杆。
(2)高速低压成型
充模开始时用高速注射,目的在于增加流动长度,同时,结合充模结束前充模阻力的增加,自然地降低了注射速度,防止了充模结束时的过充模和因控制切换造成的误差。这是这种成型方法的优点。
这种成型方法的油压控制特征是非常好地将“流量-压力”特性用于成型,是将原来的充模过程中的速度优先控制的主要考虑方法,改为“压力充模优先”的原则的成型方法。这是一种全新的方法。
成型机的特点可举例如下:
a、注射速度和注射压力在从大范围的组合中选择,使注射油缸的油压室可以切换,这样,即使在低压设定时,也能获得高速注射性能。
b、为了实现高速性能,使用蓄料缸。
c、注射油缸油压室的切换,分成5~7段,可以从中进行选择。
其中,就本方法的典型的成型效果介绍如下:
a、消除了飞边、缺料。特别是对像连接器那样的前端有薄壁部分的成型制品非常有效。
b、可消除翘曲、扭曲等缺陷。
c、因为不发生注射终结时的峰压,不会发生模具的销钉的倾斜或破损。
d、由于是低压成型,所以,可以使用锁模力较小的注射成型机。
因此,为达到更高注射速度和更快注射应答性能,可通过油压控制阀的前后压差热仪切换,来控制成型。
3、复合注塑成型
如前所述,为了降低成本,提高性能和功能,通过复合成型进行商品开发的工作相当活跃。在企业间激烈竞争中,作为开发各种各性化的商品的手段,采用了各种各样的复合成型。
(1)多品种异质材料成型
双色成型是早就被利用的一种成型方法,近年,由于部分成型一体化的进展,硬质材料和软质材料的组合,以及在感官上的高级化目的,多品种异质成型正在增加。
(2)立式注射成型机的复合成型
立式注射成型机的嵌件成型虽然不是新的成型方法,但是,由于降低成本的要求和自动化技术的提高,需求正在扩大。
(3)复合材料的直接注射成型法
复合材料的直接注射成型法是岩本产业开发的成型方法,适用于制造复合塑料制品,,是将树脂与增强材料或填充材料的干混料直接成型的方法。原来,分开为树脂制造-配混-成型加工的工艺过程中,将后两个工序一体化。
4、三维MID注射成型技术
三维注射成型电路板成型技术的基本原理是通过使用导电树脂和非导电树脂两种材料将电路制成成型制品。这种技术尚在开发之中,如果成功,将是一种小型、薄型、轻型、低消耗、低成本的制品生产技术,大量生产将是一项划时代的技术。
5、模头滑动注射成型技术
这是一种三维中空成型制品一次成型的独特的成型方法,典型的制品是汽车发动机的进气祈管和中空制品。这种技术的开发成功将使这类制品的生产成本大幅度降低并可以用于不同材料的成型。
塑料注塑技术曾经是汽车工业、电器电子零部件的基础技术,并推动这些行业的飞速发展,21世纪,塑料注塑技术将成为推动新世纪的火车头的信息通讯工业的重要支持。另外,注塑技术也将为医疗医药、食品、建筑、农业等行业发挥作用。在需求行业的推动下,注射技术及注射成型机也将获得进一步的发展。