高中数学 奇函数和偶函数的区别是什么?详细的说一下 最好举几个例子 或者画图解释下 谢谢亲们!

2024-11-08 23:43:17
推荐回答(5个)
回答1:

定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图像的特征:

定理 奇函数的图像关于原点成中心对称图形,偶函数的图象关于y轴对称。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减

回答2:

定义:



一般地,对于函数f(x),


(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。



(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。




奇偶函数图像的特征:



定理 奇函数的图像关于原点成中心对称图形,偶函数的图象关于y轴对称。


f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y),



奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。


偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。

回答3:

1、奇:f(-x)=-f(x),偶f(-x)=f(x)
2、奇:图像关于原点对称,偶:图像关于y轴对称

回答4:

回答5: