1、分子分母的极限是否都等于零(或者无穷大);
2、分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
扩展资料:
洛必达法则使用的注意事项:
1、在着手求极限以前,首先要检查是否满足0比0 型或是无穷比无穷型构型,否则滥用洛必达法则会出错(其实无穷比无穷形式分子并不需要为无穷大,只需分母为无穷大即可)。
2、当不存在时(不包括无穷情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰式求解 。
3、若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
4、洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
(1)在着手求极限以前,首先要检查是否满足0/0或∞/∞型构型。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。
(2)若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
(3)洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
(4)洛必达法则常用于求不定式极限。基本的不定式极限:0/0型;∞/∞型(x→∞或x→a),而其他的如0*∞型, ∞-∞型,以及1^∞型,∞^0型和0^0型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。
(5)满足其条件的是0比0型或者无穷大比无穷大型。如果是0乘以无穷大型的,你可以把其中一个变成分之1,就好了,但是前题是要可导且存在,并且分子或者分母一般不能是加减式子。
1.属于0/0或者 无穷/无穷 的未定式
2.分子分母可导
3.分子分母求导后的商的极限存在
当分子分母为零比零型,或者为无穷比无穷型时可以用洛必达法则求极限
0/0型不定式极限