关于二重积分对称性和奇偶性的一个问题

2025-01-13 12:19:11
推荐回答(2个)
回答1:

综述:二重积分主要是看积分函数的奇偶性,如果积分区域关于X轴对称考察被积分函数Y的奇偶,如果为奇函数,这为0,偶函数这是其积分限一半的2倍。如果积分区域关于y轴对称考察被积分函数x的奇偶.三重积分也有奇偶性,但是有差别,要看积分区域对平面。

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

二重积分的几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

回答2:

二重积分主要是看积分函数的奇偶性,如果积分区域关于X轴对称考察被积分函数Y的奇偶,如果为奇函数,这为0,偶函数这是其积分限一半的2倍。如果积分区域关于y轴对称考察被积分函数x的奇偶.三重积分也有奇偶性,但是有差别,要看积分区域对平面